Advertisements
Advertisements
Question
Find inverse of the following matrices (if they exist) by elementary transformations :
`[(2, 0, -1),(5, 1, 0),(0, 1, 3)]`
Solution
Let A = `[(2, 0, -1),(5, 1, 0),(0, 1, 3)]`
∴ |A| = `|(2, 0, -1),(5, 1, 0),(0, 1, 3)|`
= 2(3 – 0) –0 –1(5 – 0)
= 6 – 0 – 5
= 1 ≠ 0
∴ A–1 existts.
Consider AA–1 = I
∴ `[(2, 0, 1),(5, 1, 0),(0, 1, 3)] "A"^-1 = [(1, 0, 0),(0, 1, 0),(0, 0, 1)]`
Applying R1 ↔ R2, we get
`[(5, 1, 0),(2, 0, -1),(0, 1, 3)] "A"^-1 = [(-2, 1, 0),(1, 0, 0),(0, 0, 1)]`
Applying R1 → R1 – 2R2, we get
`[(1, 1, 2),(2, 0, -1),(0, 1, 3)] "A"^-1 = [(-2, 1, 0),(1, 0, 0),(0, 0, 1)]`
Applying R2 → R2 – 3R3, we get
`[(1, 1, 2),(0, 1, 4),(0, 1, 3)] "A"^-1 = [(-2, 1, 0),(5, -2, 3),(0, 0, 1)]`
Applying R1 → R1 – R2 and R3 → R3 – R2 , we get
`[(1, 0, -2),(0, 1, 4),(0, 0, -1)] "A"^-1 = [(-7, 3, -3),(5, -2, 3),(-5, 2, -2)]`
Applying R3 → (– 1) R3, we get
`[(1, 0, -2),(0, 1, 4),(0, 0, 1)] "A"^-1 = [(-7, 3, -3),(5, -2, 3),(5, -2, 2)]`
Applying R1 → R1 + 2R3 and R2 → R2 – 4R3 , we get
`[(1, 0, 0),(0, 1, 0),(0, 0, 1)] "A"^-1 = [(3, -1, 1),(-15, 6, -5),(5, -2, 2)]`
∴ A–1 = `[(3, -1, 1),(-15, 6, -5),(5, -2, 2)]`.
APPEARS IN
RELATED QUESTIONS
Find the inverse of the following matrix by the adjoint method.
`[(-1,5),(-3,2)]`
Choose the correct answer from the given alternatives in the following question:
If A = `[("cos"alpha,-"sin"alpha),("sin"alpha,"cos"alpha)]`, then A-1 = _____
Find the inverse `[(1, 2, 3 ),(1, 1, 5),(2, 4, 7)]` of the elementary row tranformation.
If A = `[(1, 0, 1),(0, 2, 3),(1, 2, 1)] "and B" = [(1, 2, 3),(1, 1, 5),(2, 4, 7)]`, then find a matrix X such that XA = B.
Find matrix X, if AX = B, where A = `[(1, 2, 3),(-1, 1, 2),(1, 2, 4)] "and B" = [(1),(2),(3)]`.
Choose the correct alternative.
If AX = B, where A = `[(-1, 2),(2, -1)], "B" = [(1),(1)]`, then X = _______
If A is a no singular matrix, then det (A–1) = _______
Fill in the blank :
If A = `[(3, -5),(2, 5)]`, then co-factor of a12 is _______
Check whether the following matrices are invertible or not:
`[(1, 1),(1, 1)]`
Find inverse of the following matrices (if they exist) by elementary transformations :
`[(1, -1),(2, 3)]`
If ω is a complex cube root of unity, then the matrix A = `[(1, ω^2, ω),(ω^2, ω, 1),(ω, 1, ω^2)]` is
If A = `[(4, -1),(-1, "k")]` such that A2 − 6A + 7I = 0, then K = ______
`cos theta [(cos theta, sin theta),(-sin theta, cos theta)] + sin theta [(sin theta, - cos theta),(cos theta, sin theta)]` = ______
If A = `[(0, 0, -1),(0, -1, 0),(-1, 0, 0)]`, then the only correct statement about the matrix A is ______
If A = `[(cos alpha, sin alpha),(-sin alpha, cos alpha)]`, then A10 = ______
If A = `[(4, 5),(2, 5)]`, then |(2A)−1| = ______
For an invertible matrix A, if A . (adj A) = `[(10, 0),(0, 10)]`, then find the value of |A|.
A = `[(cos theta, - sin theta),(-sin theta, -cos theta)]` then find A−1
If A = `[(0, 3, 3),(-3, 0, -4),(-3, 4, 0)]` and B = `[(x),(y),(z)]`, find the matrix B'(AB)
If f(x) = x2 − 2x − 3 then find f(A) when A = `[(1, 2),(2, 1)]`
If A = `[(0, 4, 3),(1, -3, -3),(-1, 4, 4)]`, then find A2 and hence find A−1
If A = `[(1,3,3),(1,4,3),(1,3,4)]` then verify that A(adj A) = |A| I and also find A-1.
If X = `[(8,-1,-3),(-5,1,2),(10,-1,-4)]` and Y = `[(2,1,-1),(0,2,1),(5,p,q)]` then, find p, q if Y = X-1
If A = `((-1,2),(1,-4))` then A(adj A) is
If A and B non-singular matrix then, which of the following is incorrect?
Solve by using matrix inversion method:
x - y + z = 2, 2x - y = 0, 2y - z = 1
If A is non-singular matrix such that (A - 2l)(A - 4l) = 0 then A + 8A-1 = ______.
If A is non-singular matrix and (A + l)(A - l) = 0 then A + A-1 = ______.
If A = `[(0, 0, 1), (0, 1, 0), (1, 0, 0)]`, then A-1 = ______
If A = `[(1, tanx),(-tanx, 1)]`, then AT A–1 = ______.
If A = `[(1,-1,1),(2,1,-3),(1,1,1)]`, then the sum of the elements of A-1 is ______.
If AB = I and B = AT, then _______.
If A = `[(2, 2),(4, 5)]` and A–1 = λ(adj(A)), then λ = ______ .
Choose the correct option:
If X, Y, Z are non zero real numbers, then the inverse of matrix A = `[(x, 0, 0),(0, y, 0),(0, 0, z)]`
A–1 exists if |A| = 0.
If A = `[(1, 2, 3),(-1, 1, 2),(1, 2, 4)]` then (A2 – 5A)A–1 = ______.
If A and B are two square matrices such that A2B = BA and (AB)10 = AkB10. Then, k is ______.
If A = `[(cos α, sin α),(- sin α, cos α)]`, then the matrix A is ______.