English

Find inverse of the following matrices (if they exist) by elementary transformations : [1-123] - Mathematics and Statistics

Advertisements
Advertisements

Question

Find inverse of the following matrices (if they exist) by elementary transformations :

`[(1, -1),(2, 3)]`

Sum

Solution

Let A = `[(1, -1),(2, 3)]`

∴ |A| = `|(1, -1),(2, 3)|`

= 3 + 2
= 5 ≠ 0
∴ A–1 exists.
Consider AA–1  = I

∴ `[(1, -1),(2, 3)] "A"^-1 = [(1, 0),(0, 1)]`

Applying R2 → R2 – 2R1, we get

`[(1, -1),(0, 5)] "A"^-1 = [(1, 0),(-2, 1)]`

Applying R2 → `(1/5)` R2, we get

`[(1, -1),(0, 1)] "A"^-1 = [(1, 0),(-2/5, 1/5)]`

Applying R1 → R1 – R2, we get

`[(1, 0),(0, 1)] "A"^-1 = [(3/5, 1/5),(-2/5, 1/5)]`

∴ A–1 = `[(3/5, 1/5),(-2/5, 1/5)]`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Matrices - Miscellaneous Exercise 2 [Page 85]

APPEARS IN

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

The sum of three numbers is 6. If we multiply the third number by 3 and add it to the second number we get 11. By adding first and third numbers we get a number, which is double than the second number. Use this information and find a system of linear equations. Find these three numbers using matrices.


If A = `[(1, 3), (3, 1)]`, Show that A2 - 2A is a scalar matrix.


Solve the following equations by the inversion method :
2x + 3y = - 5 and 3x + y = 3.


If A = `[(1,-1,2),(3,0,-2),(1,0,3)]` verify that A (adj A) = (adj A) A = | A | I


Find the inverse of the following matrix.

`[(2, -3),(-1, 2)]`


Find the inverses of the following matrices by the adjoint method:

`[(1,2,3),(0,2,4),(0,0,5)]`


Find the inverse of the following matrix (if they exist):

`((1,3),(2,7))`


Find the inverse of the following matrix (if they exist):

`[(3,-10),(2,-7)]`


Choose the correct answer from the given alternatives in the following question:

If A = `[(1,2),(3,4)]`, and A (adj A) = kI, then the value of k is


Choose the correct answer from the given alternatives in the following question:

If A = `[(lambda,1),(-1, -lambda)]`, and A-1 does not exist if λ = _______


Choose the correct answer from the given alternatives in the following question:

For a 2 × 2 matrix A, if A(adj A) = `[(10,0),(0,10)]`, then determinant A equals


Choose the correct alternative.

If A is a 2 x 2 matrix such that A(adj. A) = `[(5, 0),(0, 5)]`, then |A| = _______


If A = `[(1, 2),(-3, -1)], "B" = [(-1, 0),(1, 5)]`, then AB = 


If ω is a complex cube root of unity, then the matrix A = `[(1, ω^2, ω),(ω^2, ω, 1),(ω, 1, ω^2)]` is


`cos theta [(cos theta, sin theta),(-sin theta, cos  theta)] + sin theta [(sin theta, - cos theta),(cos theta, sin theta)]` = ______


If A = `[(cos alpha, sin alpha),(-sin alpha, cos alpha)]`, then A10 = ______


If A = `[(1, -1, 1),(2, 1, -3),(1, 1, 1)]`, 10B = `[(4, 2,2),(-5, 0, ∞),(1, -2, 3)]` and B is the inverse of matrix A, then α = ______


For an invertible matrix A, if A . (adj A) = `[(10, 0),(0, 10)]`, then find the value of |A|.


A = `[(cos theta, - sin theta),(-sin theta, -cos theta)]` then find A−1 


If A(α) = `[(cos alpha, sin alpha),(-sin alpha, cos alpha)]` then prove that A2(α) = A(2α)


A + I = `[(3, -2),(4, 1)]` then find the value of (A + I)(A − I)


If A = `[(0, 3, 3),(-3, 0, -4),(-3, 4, 0)]` and B = `[(x),(y),(z)]`, find the matrix B'(AB)


If f(x) = x2 − 2x − 3 then find f(A) when A = `[(1, 2),(2, 1)]`


Find the adjoint of matrix A = `[(2, 0, -1),(3, 1, 2),(-1, 1, 2)]`


The value of Cofactor of element a21 in matrix A = `[(1, 2),(5, -8)]` is ______


Complete the following activity to verify A. adj (A) = det (A) I.

Given A = `[(2, 0, -1),(5, 1, 0),(0, 1, 3)]` then

|A| = 2(____) – 0(____) + ( ) (____)

= 6 – 0 – 5

= ______ ≠ 0

Cofactors of all elements of matrix A are

A11 = `(-1)^2 |("( )", "( )"),("( )", "( )")|` = (______),

A12 = `(-1)^3 |(5, "( )"),("( )", 3)|` = – 15,

A13 = `(-1)^4 |(5, "( )"),("( )", 1)|` = 5,

A21 = _______, A22 = _______, A23 = _______,

A31 = `(-1)^4 |("( )", "( )"),("( )", "( )")|` = (______),

A32 = `(-1)^5 |(2, "( )"),("( )", 0)|` = (  ),

A33 = `(-1)^6 |(2, "( )"),("( )", 1)|` = 2,.

Cofactors of matrix A = `[(3, "____", "____"),("____", "____",-2),(1, "____", "____")]`

adj (A) = `[("____", "____", "____"),("____", "____","____"),("____","____","____")]`

A.adj (A) = `[(2, 0, -1),(5, 1, 0),(0, 1, 3)] [("( )", -1, 1), (-15, "( )", -5),("( )", -2, "( )")] = [(1, 0, "( )"),("( )", "( )", "( )"),(0, "( )", "( )")]` = |A|I


Show that the matrices A = `[(2,2,1),(1,3,1),(1,2,2)]` and B = `[(4/5,(-2)/5,(-1)/5),((-1)/5,3/5,(-1)/5),((-1)/5,(-2)/5,4/5)]` are inverses of each other.


Solve by matrix inversion method:

2x – z = 0; 5x + y = 4; y + 3z = 5


The sum of three numbers is 20. If we multiply the first by 2 and add the second number and subtract the third we get 23. If we multiply the first by 3 and add second and third to it, we get 46. By using the matrix inversion method find the numbers.


Solve by using matrix inversion method:

x - y + z = 2, 2x - y = 0, 2y - z = 1


If A = `[(2, 0, -1), (5, 1, 0), (0, 1, 3)]` and A−1 = `[(3, -1, 1), (α, 6, -5), (β, -2, 2)]`, then the values of α and β are, respectively.


If A = `[(2, -3), (3, 5)]`, then |Adj A| is equal to ______ 


If A = `[(2, 3),(a, 6)]` is a singular matrix, then a = ______.


A–1 exists if |A| = 0.


If A = `[(0, 0, 1),(0, 1, 0),(1, 0, 0)]`, then A2008 is equal to ______.


If A = `[(1, 2, 3),(-1, 1, 2),(1, 2, 4)]` then (A2 – 5A)A–1 = ______.


The inverse of the matrix `[(1, 0, 0),(3, 3, 0),(5, 2, -1)]` is ______.


For an invertible matrix A, if A (adj A) = `|(20, 0),(0, 20)|`, then | A | = ______.


if `A = [(2,-1,1),(-1,2,-1),(1,-1,2)]` then find A−1 by the adjoint method.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×