Advertisements
Advertisements
Question
If A(α) = `[(cos alpha, sin alpha),(-sin alpha, cos alpha)]` then prove that A2(α) = A(2α)
Solution
A2(α) = `[(cos alpha, sin alpha),(-sin alpha, cos alpha)] [(cos alpha, sin alpha),(-sin alpha, cos alpha)]`
= `[(cos^2 alpha - sin^2 alpha, cos alpha sin alpha + sin alpha cos alpha),(- cos alpha sin alpha - sin alpha cos alpha, - sin^2 alpha cos^2 alpha)]`
= `[(cos(alpha + alpha), sin(alpha + alpha)),(- sin(alpha + alpha), cos(alpha + alpha))]` .......`[(∵ sin("A" + "B") = sin "A" cos "B" + cos "A" sin "B"),(cos("A" + "B") = cos "A" cos "B" - sin "A" sin "B")]`
= `[(cos(2alpha), sin(2alpha)),(-sin(2alpha), cos(2alpha))]`
= A(2α)
APPEARS IN
RELATED QUESTIONS
Find the inverse of matrix A by using adjoint method; where A = `[(1, 0, 1), (0, 2, 3), (1, 2, 1)]`
Find the matrix of the co-factor for the following matrix.
`[(1, 0, 2),(-2, 1, 3),(0, 3, -5)]`
Find the inverse of the following matrices by transformation method: `[(1, 2),(2, -1)]`
Choose the correct alternative.
If a 3 x 3 matrix B has it inverse equal to B, thenB2 = _______
Fill in the blank :
If a1x + b1y = c1 and a2x + b2y = c2, then matrix form is `[(......, ......),(......, ......)] = [(x),(y)] = [(......),(......)]`
State whether the following is True or False :
A(adj. A) = |A| I, where I is the unit matrix.
Find inverse of the following matrices (if they exist) by elementary transformations :
`[(1, -1),(2, 3)]`
If A = `[(4, -1),(-1, "k")]` such that A2 − 6A + 7I = 0, then K = ______
`cos theta [(cos theta, sin theta),(-sin theta, cos theta)] + sin theta [(sin theta, - cos theta),(cos theta, sin theta)]` = ______
If A = `[(0, 0, -1),(0, -1, 0),(-1, 0, 0)]`, then the only correct statement about the matrix A is ______
If A = `[(0, 1),(2, 3),(1, -1)]` and B = `[(1, 2, 1),(2, 1, 0)]`, then find (AB)−1
The value of Cofactor of element a21 in matrix A = `[(1, 2),(5, -8)]` is ______
Complete the following activity to verify A. adj (A) = det (A) I.
Given A = `[(2, 0, -1),(5, 1, 0),(0, 1, 3)]` then
|A| = 2(____) – 0(____) + ( ) (____)
= 6 – 0 – 5
= ______ ≠ 0
Cofactors of all elements of matrix A are
A11 = `(-1)^2 |("( )", "( )"),("( )", "( )")|` = (______),
A12 = `(-1)^3 |(5, "( )"),("( )", 3)|` = – 15,
A13 = `(-1)^4 |(5, "( )"),("( )", 1)|` = 5,
A21 = _______, A22 = _______, A23 = _______,
A31 = `(-1)^4 |("( )", "( )"),("( )", "( )")|` = (______),
A32 = `(-1)^5 |(2, "( )"),("( )", 0)|` = ( ),
A33 = `(-1)^6 |(2, "( )"),("( )", 1)|` = 2,.
Cofactors of matrix A = `[(3, "____", "____"),("____", "____",-2),(1, "____", "____")]`
adj (A) = `[("____", "____", "____"),("____", "____","____"),("____","____","____")]`
A.adj (A) = `[(2, 0, -1),(5, 1, 0),(0, 1, 3)] [("( )", -1, 1), (-15, "( )", -5),("( )", -2, "( )")] = [(1, 0, "( )"),("( )", "( )", "( )"),(0, "( )", "( )")]` = |A|I
Find the inverse of the following matrix:
`[(1,-1),(2,3)]`
If A = `[(2,3),(1,-6)]` and B = `[(-1,4),(1,-2)]`, then verify adj (AB) = (adj B)(adj A)
If A = `[(-1,2,-2),(4,-3,4),(4,-4,5)]` then, show that the inverse of A is A itself.
Solve by matrix inversion method:
2x + 3y – 5 = 0; x – 2y + 1 = 0.
The inverse matrix of `((3,1),(5,2))` is
If A = `|(1,1,1),(3,4,7),(1,-1,1)|` verify that A(adj A) = (adj A)(A) = |A|I3.
If A = `[(2, 0, -1), (5, 1, 0), (0, 1, 3)]` and A−1 = `[(3, -1, 1), (α, 6, -5), (β, -2, 2)]`, then the values of α and β are, respectively.
If A = `[(p/4, 0, 0), (0, q/5, 0), (0, 0, r/6)]` and `"A"^-1 = [(1/4, 0, 0), (0, 1/5, 0), (0, 0, 1/6)]`, then p + q + r = ______
If A is non-singular matrix and (A + l)(A - l) = 0 then A + A-1 = ______.
If A = `[(2, -3), (3, 5)]`, then |Adj A| is equal to ______
The inverse of `[(1,cos alpha),(- cos alpha, -1)]` is ______.
If A = `[(1, tanx),(-tanx, 1)]`, then AT A–1 = ______.
The matrix `[(lambda, 1, 0),(0, 3, 5),(0, -3, lambda)]` is invertible ______.
If the inverse of the matrix A = `[(1, 1, -1), (1, -2, 1), (2, -1, -3)]` is `1/9 [(7, 4, -1), (5, -1, -2), (3, 3, a)]`, then a is equal to ______
If matrix A = `[(1, -1),(2, 3)]` such that AX = I, then X is equal to ______.
If matrix P = `[(0, -tan (θ//2)),(tanθ//2, 0)]`, then find (I – P) `[(cosθ, -sinθ),(sinθ, cosθ)]`
The number of solutions of equation x2 – x3 = 1, – x1 + 2x3 = 2, x1 – 2x2 = 3 is ______.
The inverse of the matrix `[(1, 0, 0),(3, 3, 0),(5, 2, -1)]` is ______.
If A = `[(2, 2),(-3, 2)]`, B = `[(0, -1),(1, 0)]`, then (B–1 A–1)–1 is equal to ______.
If A = `[(cos α, sin α),(-sin α, cos α)]`, then find α satisfying `0 < α < π/2`, when A + AT = `sqrt(2) l_2` where AT is transpose of A.
If matrix A = `[(1, -1),(2, 3)]`, then A2 – 4A + 5I is where I is a unit matix.
If A = `[(4, 3, 2),(-1, 2, 0)]`, B = `[(1, 2),(-1, 0),(1, -2)]`
Find (AB)–1 by adjoint method.
Solution:
AB = `[(4, 3, 2),(-1, 2, 0)] [(1, 2),(-1, 0),(1, -2)]`
AB = [ ]
|AB| = `square`
M11 = –2 ∴ A11 = (–1)1+1 . (–2) = –2
M12 = –3 A12 = (–1)1+2 . (–3) = 3
M21 = 4 A21 = (–1)2+1 . (4) = –4
M22 = 3 A22 = (–1)2+2 . (3) = 3
Cofactor Matrix [Aij] = `[(-2, 3),(-4, 3)]`
adj (A) = [ ]
A–1 = `1/|A| . adj(A)`
A–1 = `square`
if `A = [(2,-1,1),(-1,2,-1),(1,-1,2)]` then find A−1 by the adjoint method.