English

Choose the correct alternative. If a 3 x 3 matrix B has it inverse equal to B, thenB2 = _______ - Mathematics and Statistics

Advertisements
Advertisements

Question

Choose the correct alternative.

If a 3 x 3 matrix B has it inverse equal to B, thenB2 = _______

Options

  • `[(0, 1, 1),(0, 1, 0),(1, 0, 1)]`

  • `[(1, 1, 1),(1, 1, 1),(1, 0, 1)]`

  • `[(1, 0, 1),(0, 1, 0),(0, 0, 0)]`

  • `[(1, 0, 0),(0, 1, 0),(0, 0, 1)]`

MCQ

Solution

B–1 = B
∴ B–1B = B.B
∴ B2 = I = `[(1, 0, 0),(0, 1, 0),(0, 0, 1)]`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Matrices - Miscellaneous Exercise 2 [Page 82]

APPEARS IN

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the inverse of the following matrix by the adjoint method.

`[(2,-2),(4,3)]`


Find the inverse of the following matrix (if they exist):

`((1,-1),(2,3))`


Choose the correct answer from the given alternatives in the following question:

If A = `[(lambda,1),(-1, -lambda)]`, and A-1 does not exist if λ = _______


Find the inverse of  A = `[(1, 0, 1),(0, 2, 3),(1, 2, 1)]` by elementary column transformations.


Fill in the blank :

If A = [aij]mxm is a non-singular matrix, then A–1 = `(1)/(......)` adj(A).


State whether the following is True or False :

If A and B are conformable for the product AB, then (AB)T = ATBT.


State whether the following is True or False :

Singleton matrix is only row matrix.


Check whether the following matrices are invertible or not:

`[(3, 4, 3),(1, 1, 0),(1, 4, 5)]`


Find inverse of the following matrices (if they exist) by elementary transformations :

`[(2, 1),(7, 4)]`


`cos theta [(cos theta, sin theta),(-sin theta, cos  theta)] + sin theta [(sin theta, - cos theta),(cos theta, sin theta)]` = ______


If A = `[(4, 5),(2, 5)]`, then |(2A)−1| = ______


If `[(x - y - z),(-y + z),(z)] = [(0),(5),(3)]`, then the value of x, y and z are respectively ______


If A = `[(3, 0, 0),(0, 3, 0),(0, 0, 3)]`, then |A| |adj A| = ______


If A = `[(2, 2),(-3, 2)]` and B = `[(0, -1),(1, 0)]`, then find the matrix (B−1 A−1)−1.


If A = `[(1, 2),(3, -2),(-1, 0)]` and B = `[(1, 3, 2),(4, -1, 3)]` then find the order of AB


A + I = `[(3, -2),(4, 1)]` then find the value of (A + I)(A − I)


If A = `[(6, 5),(5, 6)]` and B = `[(11, 0),(0, 11)]` then find A'B'


If A = `[(1, 0, 0),(3, 3, 0),(5, 2, -1)]`, find A−1 by the adjoint method


If A = `[(1,3,3),(1,4,3),(1,3,4)]` then verify that A(adj A) = |A| I and also find A-1.


Find the inverse of the following matrix:

`[(3,1),(-1,3)]`


Find the inverse of the following matrix:

`[(-3,-5,4),(-2,3,-1),(1,-4,-6)]`


If A = `[(2,3),(1,-6)]` and B = `[(-1,4),(1,-2)]`, then verify adj (AB) = (adj B)(adj A)


Solve by matrix inversion method:

3x – y + 2z = 13; 2x + y – z = 3; x + 3y – 5z = - 8


The sum of three numbers is 20. If we multiply the first by 2 and add the second number and subtract the third we get 23. If we multiply the first by 3 and add second and third to it, we get 46. By using the matrix inversion method find the numbers.


Weekly expenditure in an office for three weeks is given as follows. Assuming that the salary in all the three weeks of different categories of staff did not vary, calculate the salary for each type of staff, using the matrix inversion method.

Week Number of employees Total weekly salary
(in ₹)
A B C
1st week 4 2 3 4900
2nd week 3 3 2 4500
3rd week 4 3 4 5800

adj (AB) is equal to:


The inverse matrix of `((3,1),(5,2))` is


If A and B non-singular matrix then, which of the following is incorrect?


Solve by using matrix inversion method:

x - y + z = 2, 2x - y = 0, 2y - z = 1


If A = `[(0, -1, 0), (1, 0, 0), (0, 0, -1)]`, then A-1 is ______ 


If ω is a complex cube root of unity and A = `[(ω,0,0),(0,ω^2,0),(0,0,1)]` then A-1 = ?


If A = `[(2, -3), (3, 5)]`, then |Adj A| is equal to ______ 


If A = `[(5, -4), (7, -5)]`, then 3A-1 =  ______ 


If `A = [[-3,1],[-4,3]]` and A-1 = αA, then α = ______.


If A = `[(2, 2),(-3, 2)]`, B = `[(0, -1),(1, 0)]`, then (B–1 A–1)–1 is equal to ______.


If A = `[(cos α, sin α),(-sin α, cos α)]`, then find α satisfying `0 < α < π/2`, when A + AT = `sqrt(2)  l_2` where AT is transpose of A.


If A = `[(1, 2),(3, 4)]` verify that A (adj A) = (adj A) A = |A| I


If A = `[(4, 3, 2),(-1, 2, 0)]`, B = `[(1, 2),(-1, 0),(1, -2)]`

Find (AB)–1 by adjoint method.

Solution:

AB = `[(4, 3, 2),(-1, 2, 0)] [(1, 2),(-1, 0),(1, -2)]`

AB = [  ]

|AB| =  `square`

M11 = –2  ∴ A11 = (–1)1+1 . (–2) = –2

M12 = –3     A12 = (–1)1+2 . (–3) = 3

M21 = 4       A21 = (–1)2+1 . (4) = –4

M22 = 3       A22 = (–1)2+2 . (3) = 3

Cofactor Matrix [Aij] = `[(-2, 3),(-4, 3)]`

adj (A) = [  ]

A–1 = `1/|A| . adj(A)`

A–1 = `square`


If A = `[(3, 1),(-1, 2)]`, show that A2 – 5A + 7I = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×