Advertisements
Advertisements
Question
Choose the correct answer from the given alternatives in the following question:
If A = `[(lambda,1),(-1, -lambda)]`, and A-1 does not exist if λ = _______
Options
0
± 1
2
2
Solution
If A = `[(lambda,1),(-1, -lambda)]`, and A-1 does not exist if λ = ± 1
APPEARS IN
RELATED QUESTIONS
Find the adjoint of the following matrix.
`[(1, -1, 2),(-2, 3, 5),(-2, 0, -1)]`
If A = `[(1,-1,2),(3,0,-2),(1,0,3)]` verify that A (adj A) = (adj A) A = | A | I
Find the inverse of the following matrix.
`[(2, -3),(-1, 2)]`
Find the inverse of the following matrix (if they exist):
`[(2,-3),(5,7)]`
Choose the correct answer from the given alternatives in the following question:
If A = `[(2,-4),(3,1)]`, then the adjoint of matrix A is
Choose the correct answer from the given alternatives in the following question:
For a 2 × 2 matrix A, if A(adj A) = `[(10,0),(0,10)]`, then determinant A equals
Choose the correct answer from the given alternatives in the following question:
If A−1 = `- 1/2[(1,-4),(-1,2)]`, then A = ______.
Find the inverse of the following matrices by transformation method: `[(1, 2),(2, -1)]`
Choose the correct alternative.
If A is a 2 x 2 matrix such that A(adj. A) = `[(5, 0),(0, 5)]`, then |A| = _______
The adjoint matrix of `[(3, -3, 4),(2, -3, 4),(0, -1, 1)]` is ______.
A = `[(cos alpha, - sin alpha, 0),(sin alpha, cos alpha, 0),(0, 0, 1)]`, then A−1 is
`cos theta [(cos theta, sin theta),(-sin theta, cos theta)] + sin theta [(sin theta, - cos theta),(cos theta, sin theta)]` = ______
If A = `[(cos alpha, sin alpha),(-sin alpha, cos alpha)]`, then A10 = ______
If A = `[(1, 2, 3),(1, 1, 5),(2, 4, 7)]`, then find the value of a31A31 + a32A32 + a33A33.
If A = `[("a", "b"),("c", "d")]` then find the value of |A|−1
Find the inverse of A = `[(sec theta, tan theta, 0),(tan theta, sec theta, 0),(0, 0, 1)]`
Complete the following activity to verify A. adj (A) = det (A) I.
Given A = `[(2, 0, -1),(5, 1, 0),(0, 1, 3)]` then
|A| = 2(____) – 0(____) + ( ) (____)
= 6 – 0 – 5
= ______ ≠ 0
Cofactors of all elements of matrix A are
A11 = `(-1)^2 |("( )", "( )"),("( )", "( )")|` = (______),
A12 = `(-1)^3 |(5, "( )"),("( )", 3)|` = – 15,
A13 = `(-1)^4 |(5, "( )"),("( )", 1)|` = 5,
A21 = _______, A22 = _______, A23 = _______,
A31 = `(-1)^4 |("( )", "( )"),("( )", "( )")|` = (______),
A32 = `(-1)^5 |(2, "( )"),("( )", 0)|` = ( ),
A33 = `(-1)^6 |(2, "( )"),("( )", 1)|` = 2,.
Cofactors of matrix A = `[(3, "____", "____"),("____", "____",-2),(1, "____", "____")]`
adj (A) = `[("____", "____", "____"),("____", "____","____"),("____","____","____")]`
A.adj (A) = `[(2, 0, -1),(5, 1, 0),(0, 1, 3)] [("( )", -1, 1), (-15, "( )", -5),("( )", -2, "( )")] = [(1, 0, "( )"),("( )", "( )", "( )"),(0, "( )", "( )")]` = |A|I
Complete the following activity to find inverse of matrix using elementary column transformations and hence verify.
`[(2, 0, -1),(5, 1, 0),(0, 1, 3)]` B−1 = `[(1, 0, 0),(0, 1, 0),(0, 0, 1)]`
C1 → C1 + C3
`[("( )", 0, -1),("( )", 1, 0),("( )", 1, 3)]` B−1 = `[("( )", 0, 0),("( )", 1, 0),("( )", 0, 1)]`
C3 → C3 + C1
`[(1, 0, 0),("( )", 1, "( )"),(3, 1, "( )")]` B−1 = `[(1, 0, "( )"),(0, 1, 0),("( )", 0, "( )")]`
C1 → C1 – 5C2, C3 → C3 – 5C2
`[(1, "( )", 0),(0, 1, 0),("( )", 1, "( )")]` B−1 = `[(1, 0, "( )"),("( )", 1, -5),(1, "( )", 2)]`
C1 → C1 – 2C3, C2 → C2 – C3
`[(1, 0, 0),(0, 1, 0),(0, 0, 1)]` B−1 = `[(3, -1, "( )"),("( )", 6, -5),(5, "( )", "( )")]`
B−1 = `[("( )", "( )", "( )"),("( )", "( )", "( )"),("( )", "( )", "( )")]`
`[(2, "( )", -1),("( )", 1, 0),(0, 1, "( )")] [(3, "( )", "( )"),("( )", 6, "( )"),("( )", -2, "( )")] = [(1, 0, 0),(0, 1, 0),(0, 0, 1)]`
If A = `[(2,-2,2),(2,3,0),(9,1,5)]` then, show that (adj A) A = O.
If A = `[(3,7),(2,5)]` and B = `[(6,8),(7,9)]`, then verify that (AB)-1 = B-1A-1
Find m if the matrix `[(1,1,3),(2,λ,4),(9,7,11)]` has no inverse.
If X = `[(8,-1,-3),(-5,1,2),(10,-1,-4)]` and Y = `[(2,1,-1),(0,2,1),(5,p,q)]` then, find p, q if Y = X-1
The sum of three numbers is 20. If we multiply the first by 2 and add the second number and subtract the third we get 23. If we multiply the first by 3 and add second and third to it, we get 46. By using the matrix inversion method find the numbers.
Which of the following matrix has no inverse
If A = `[(2,3),(1,2)]`, B = `[(1,0),(3,1)]`, then B-1A-1 = ?
If A = `[(0, -1, 0), (1, 0, 0), (0, 0, -1)]`, then A-1 is ______
If A is non-singular matrix and (A + l)(A - l) = 0 then A + A-1 = ______.
If ω is a complex cube root of unity and A = `[(ω,0,0),(0,ω^2,0),(0,0,1)]` then A-1 = ?
If A and Bare square matrices of order 3 such that |A| = 2, |B| = 4, then |A(adj B)| = ______.
If A = `[(2, -3), (3, 5)]`, then |Adj A| is equal to ______
If A2 - A + I = 0, then A-1 = ______.
If A = `[(5, -4), (7, -5)]`, then 3A-1 = ______
If AB = I and B = AT, then _______.
If A = `[(2, -3, 3),(2, 2, 3),(3, "p", 2)]` and A–1 = `[(-2/5, 0, 3/5),(-1/5, 1/5, "q"),(2/5, 1/5, -2/5)]`, then ______.
Choose the correct option:
If X, Y, Z are non zero real numbers, then the inverse of matrix A = `[(x, 0, 0),(0, y, 0),(0, 0, z)]`
If matrix A = `[(3, -2, 4),(1, 2, -1),(0, 1, 1)]` and A–1 = `1/k` (adj A), then k is ______.
If A = `[(x, 1),(1, 0)]` and A = A–1, then x = ______.
If A = `[(1, 1, 0),(2, 1, 5),(1, 2, 1)]`, then a11A21 + a12A22 + a13A23 is equal to ______.
If A = `[(cos α, sin α),(-sin α, cos α)]`, then find α satisfying `0 < α < π/2`, when A + AT = `sqrt(2) l_2` where AT is transpose of A.
If A and B are two square matrices such that A2B = BA and (AB)10 = AkB10. Then, k is ______.