English

State whether the following is True or False : A(adj. A) = |A| I, where I is the uniy matrix. - Mathematics and Statistics

Advertisements
Advertisements

Question

State whether the following is True or False :

A(adj. A) = |A| I, where I is the unit matrix.

Options

  • True

  • False

MCQ
True or False

Solution

A(adj. A) = |A| I, where I is the unit matrix True.

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Matrices - Miscellaneous Exercise 2 [Page 83]

APPEARS IN

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the inverse of matrix A by using adjoint method; where A = `[(1, 0, 1), (0, 2, 3), (1, 2, 1)]`


Solve the following equations by the inversion method :
2x + 3y = - 5 and 3x + y = 3.


Find the co-factor of the element of the following matrix.

`[(1,-1,2),(-2,3,5),(-2,0,-1)]`


Find the adjoint of the following matrix.

`[(1, -1, 2),(-2, 3, 5),(-2, 0, -1)]`


Find the inverse of the following matrix by the adjoint method.

`[(1, 0, 0),(3, 3, 0),(5, 2, -1)]`


Find the inverse of the following matrix.

`[(2, -3),(-1, 2)]`


Find the inverse of the following matrix (if they exist):

`((1,3),(2,7))`


Find the inverse of the following matrix (if they exist):

`[(2,-3),(5,7)]`


Find the inverse of the following matrix (if they exist):

`[(2,-3,3),(2,2,3),(3,-2,2)]`


Choose the correct answer from the given alternatives in the following question:

For a 2 × 2 matrix A, if A(adj A) = `[(10,0),(0,10)]`, then determinant A equals


Choose the correct answer from the given alternatives in the following question:

If A−1 = `- 1/2[(1,-4),(-1,2)]`, then A = ______.


Find the inverse `[(1, 2, 3 ),(1, 1, 5),(2, 4, 7)]` of the elementary row tranformation.


If A = `[(1, 0, 1),(0, 2, 3),(1, 2, 1)] "and B" = [(1, 2, 3),(1, 1, 5),(2, 4, 7)]`, then find a matrix X such that XA = B.


Choose the correct alternative.

If a 3 x 3 matrix B has it inverse equal to B, thenB2 = _______


If A is a no singular matrix, then det (A–1) = _______


Fill in the blank :

If A = [aij]mxm is a non-singular matrix, then A–1 = `(1)/(......)` adj(A).


Find inverse of the following matrices (if they exist) by elementary transformations :

`[(2, -3, 3),(2, 2, 3),(3, -2, 2)]`


If A = `[(cos alpha, sin alpha),(-sin alpha, cos alpha)]`, then A10 = ______


If A = `[(2, 2),(-3, 2)]` and B = `[(0, -1),(1, 0)]`, then find the matrix (B−1 A−1)−1.


If A = `[(2, 4),(1, 3)]` and B = `[(1, 1),(0, 1)]` then find (A−1 B−1)


If A = `[(1, 0, 0),(3, 3, 0),(5, 2, -1)]`, find A−1 by the adjoint method


State whether the following statement is True or False:

Inverse of `[(2, 0),(0, 3)]` is `[(1/2, 0),(0, 1/3)]`


If A = `[(2,3),(1,-6)]` and B = `[(-1,4),(1,-2)]`, then verify adj (AB) = (adj B)(adj A)


If A-1 = `[(1,0,3),(2,1,-1),(1,-1,1)]`  then, find A.


Which of the following matrix has no inverse


If A and B non-singular matrix then, which of the following is incorrect?


If A = `|(3,-1,1),(-15,6,-5),(5,-2,2)|` then, find the Inverse of A.


If A = `[(2,3),(1,2)]`, B = `[(1,0),(3,1)]`, then B-1A-1 = ?


If A = `[(2, 0, -1), (5, 1, 0), (0, 1, 3)]` and A−1 = `[(3, -1, 1), (α, 6, -5), (β, -2, 2)]`, then the values of α and β are, respectively.


If A = `[(0, -1, 0), (1, 0, 0), (0, 0, -1)]`, then A-1 is ______ 


If ω is a complex cube root of unity and A = `[(ω,0,0),(0,ω^2,0),(0,0,1)]` then A-1 = ?


If A = `[(2, 2),(4, 5)]` and A–1 = λ(adj(A)), then λ = ______ .


If A = `[(cos theta, sin theta, 0),(-sintheta, costheta, 0),(0, 0, 1)]`, where A11, A11, A13 are co-factors of a11, a12, a13 respectively, then the value of a11A11 + a12A12 + a13A13 = ______.


The inverse of the matrix A = `[(3, 0, 0),(0, 4, 0),(0, 0, 5)]` is ______.


If matrix P = `[(0, -tan (θ//2)),(tanθ//2, 0)]`, then find (I – P) `[(cosθ, -sinθ),(sinθ, cosθ)]`


Matrix A = `[(1, 2, 3),(1, 1, 5),(2, 4, 7)]` then the value of a31 A31 + a32 A32 + a33 A33 is ______.


The inverse of the matrix `[(1, 0, 0),(3, 3, 0),(5, 2, -1)]` is ______.


If A = `[(1, 1, 0),(2, 1, 5),(1, 2, 1)]`, then a11A21 + a12A22 + a13A23 is equal to ______.


If matrix A = `[(1, -1),(2, 3)]`, then A2 – 4A + 5I is where I is a unit matix.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×