Advertisements
Advertisements
Question
If A = `[(3, 1),(5, 2)]`, and AB = BA = I, then find the matrix B
Solution
AB = BA = I
⇒ B = A−1
|A| = `|(3, 1),(5, 2)|`
= 6 – 5
= 1
∴ A11 = (–1)1+1 M11 = M11 = 2
A12 = (–1)1+2 M12 = – M12 = – 5
A21 = (–1)2+1 M21 = – M21 = – 1
A22 = (–1)2+2 M22 = M22 = 3
∴ adj (A) = `[(2, -5),(-1, 3)]^"T"`
= `[(2, -1),(-5, 3)]`
∴ B = A−1 = `1/|"A"|` adj (A)
∴ B = `[(2, -1),(-5, 3)]`
APPEARS IN
RELATED QUESTIONS
The sum of three numbers is 6. If we multiply the third number by 3 and add it to the second number we get 11. By adding first and third numbers we get a number, which is double than the second number. Use this information and find a system of linear equations. Find these three numbers using matrices.
Find the inverse of matrix A by using adjoint method; where A = `[(1, 0, 1), (0, 2, 3), (1, 2, 1)]`
If A = `[(1,-1,2),(3,0,-2),(1,0,3)]` verify that A (adj A) = (adj A) A = | A | I
Find the inverse of the following matrix.
`[(2, -3),(-1, 2)]`
Choose the correct answer from the given alternatives in the following question:
If A = `[(2,-4),(3,1)]`, then the adjoint of matrix A is
Choose the correct answer from the given alternatives in the following question:
If A = `[(1,2),(3,4)]`, and A (adj A) = kI, then the value of k is
Choose the correct answer from the given alternatives in the following question:
The inverse of a symmetric matrix is
Find the inverse of the following matrices by the adjoint method `[(1, 2, 3),(0, 2, 4),(0, 0, 5)]`.
Find the inverse of the following matrices by transformation method: `[(1, 2),(2, -1)]`
Choose the correct alternative.
If a 3 x 3 matrix B has it inverse equal to B, thenB2 = _______
If A is a no singular matrix, then det (A–1) = _______
Fill in the blank :
If A = [aij]2x3 and B = [bij]mx1 and AB is defined, then m = _______
Fill in the blank :
If A = [aij]mxm is a non-singular matrix, then A–1 = `(1)/(......)` adj(A).
Fill in the blank :
(AT)T = _______
Fill in the blank :
If A = `[(2, 1),(1, 1)] "and" "A"^-1 = [(1, 1),(x, 2)]`, then x = _______
Fill in the blank :
If a1x + b1y = c1 and a2x + b2y = c2, then matrix form is `[(......, ......),(......, ......)] = [(x),(y)] = [(......),(......)]`
A = `[(cos alpha, - sin alpha, 0),(sin alpha, cos alpha, 0),(0, 0, 1)]`, then A−1 is
The solution (x, y, z) of the equation `[(1, 0, 1),(-1, 1, 0),(0, -1, 1)] [(x),(y),(z)] = [(1),(1),(2)]` is (x, y, z) =
If A = `[(3, 0, 0),(0, 3, 0),(0, 0, 3)]`, then |A| |adj A| = ______
If A = `[(1, -1, 1),(2, 1, -3),(1, 1, 1)]`, 10B = `[(4, 2,2),(-5, 0, ∞),(1, -2, 3)]` and B is the inverse of matrix A, then α = ______
If A = `[(2, 2),(-3, 2)]` and B = `[(0, -1),(1, 0)]`, then find the matrix (B−1 A−1)−1.
A = `[(cos theta, - sin theta),(-sin theta, -cos theta)]` then find A−1
If A = [aij]2×2, where aij = i – j, then A = ______
If X = `[(8,-1,-3),(-5,1,2),(10,-1,-4)]` and Y = `[(2,1,-1),(0,2,1),(5,p,q)]` then, find p, q if Y = X-1
The cost of 2 Kg of Wheat and 1 Kg of Sugar is ₹ 70. The cost of 1 Kg of Wheat and 1 Kg of Rice is ₹ 70. The cost of 3 Kg of Wheat, 2 Kg of Sugar and 1 Kg of rice is ₹ 170. Find the cost of per kg each item using the matrix inversion method.
If A = `[(4,5),(2,1)]` and A2 - 5A - 6l = 0, then A-1 = ?
The sum of the cofactors of the elements of second row of the matrix `[(1, 3, 2), (-2, 0, 1), (5, 2, 1)]` is ____________.
If A = `[(2, 0, -1), (5, 1, 0), (0, 1, 3)]` and A−1 = `[(3, -1, 1), (α, 6, -5), (β, -2, 2)]`, then the values of α and β are, respectively.
If A is non-singular matrix such that (A - 2l)(A - 4l) = 0 then A + 8A-1 = ______.
If A = `[(1 + 2"i", "i"),(- "i", 1 - 2"i")]`, where i = `sqrt-1`, then A(adj A) = ______.
If A and Bare square matrices of order 3 such that |A| = 2, |B| = 4, then |A(adj B)| = ______.
If A2 - A + I = 0, then A-1 = ______.
If `A = [[-3,1],[-4,3]]` and A-1 = αA, then α = ______.
If A = `[(cos theta, sin theta, 0),(-sintheta, costheta, 0),(0, 0, 1)]`, where A11, A11, A13 are co-factors of a11, a12, a13 respectively, then the value of a11A11 + a12A12 + a13A13 = ______.
If A–1 = `[(3, -1, 1),(-15, 6, -5),(5, -2, 2)]`, then adj A = ______.
Find the cofactors of the elements of the matrix
`[(-1, 2),(-3, 4)]`
If A = `[(x, 1),(1, 0)]` and A = A–1, then x = ______.
If A = `[(2, 2),(-3, 2)]`, B = `[(0, -1),(1, 0)]`, then (B–1 A–1)–1 is equal to ______.
If matrix A = `[(1, 2),(4, 3)]`, such that AX = I, then X is equal to ______.