हिंदी

If A(α) = [cosαsinα-sinαcosα] then prove that A2(α) = A(2α) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If A(α) = `[(cos alpha, sin alpha),(-sin alpha, cos alpha)]` then prove that A2(α) = A(2α)

योग

उत्तर

A2(α) = `[(cos alpha, sin alpha),(-sin alpha, cos alpha)] [(cos alpha, sin alpha),(-sin alpha, cos alpha)]`

= `[(cos^2 alpha - sin^2 alpha, cos alpha sin alpha + sin alpha cos alpha),(- cos alpha sin alpha - sin alpha cos  alpha, - sin^2 alpha cos^2 alpha)]`

= `[(cos(alpha + alpha), sin(alpha + alpha)),(- sin(alpha + alpha), cos(alpha + alpha))]`    .......`[(∵ sin("A" + "B") = sin "A" cos "B" + cos "A" sin "B"),(cos("A" + "B") = cos "A" cos "B" - sin "A" sin "B")]`

= `[(cos(2alpha), sin(2alpha)),(-sin(2alpha), cos(2alpha))]`

= A(2α)

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1.2: Matrics - Very Short Answer

संबंधित प्रश्न

Find the co-factor of the element of the following matrix:

`[(-1, 2),(-3, 4)]`


Find the matrix of the co-factor for the following matrix.

`[(1,3),(4,-1)]`


Find the inverse of the following matrix.

`[(1,2),(2,-1)]`


Find the inverse of the following matrix.

`[(0,1,2),(1,2,3),(3,1,1)]`


Find the inverse of the following matrix (if they exist):

`[(2,0,-1),(5,1,0),(0,1,3)]`


Choose the correct answer from the given alternatives in the following question:

If A = `[(1,2),(3,4)]`, and A (adj A) = kI, then the value of k is


Find the inverse of the following matrices by the adjoint method `[(2, -2),(4, 5)]`.


Find the inverse of the following matrices by the adjoint method `[(1, 2, 3),(0, 2, 4),(0, 0, 5)]`.


Check whether the following matrices are invertible or not:

`[(1, 2, 3),(2, 4, 5),(2, 4, 6)]`


Find inverse of the following matrices (if they exist) by elementary transformations :

`[(2, 1),(7, 4)]`


Find the inverse of `[(3, 1, 5),(2, 7, 8),(1, 2, 5)]` by adjoint method.


If A = `[(4, -1),(-1, "k")]` such that A2 − 6A + 7I = 0, then K = ______


If `[(x - y - z),(-y + z),(z)] = [(0),(5),(3)]`, then the value of x, y and z are respectively ______


If A = `[(3, 0, 0),(0, 3, 0),(0, 0, 3)]`, then |A| |adj A| = ______


If A = `[(1, 2, 3),(1, 1, 5),(2, 4, 7)]`, then find the value of a31A31 + a32A32 + a33A33.


A = `[(cos theta, - sin theta),(-sin theta, -cos theta)]` then find A−1 


If A = `[("a", "b"),("c", "d")]` then find the value of |A|−1 


A + I = `[(3, -2),(4, 1)]` then find the value of (A + I)(A − I)


If A = `[(6, 5),(5, 6)]` and B = `[(11, 0),(0, 11)]` then find A'B'


If A = `[(2, 4),(1, 3)]` and B = `[(1, 1),(0, 1)]` then find (A−1 B−1)


Find A–1 using adjoint method, where A = `[(cos theta, sin theta),(-sin theta, cos theta)]`


Find the adjoint of matrix A = `[(6, 5),(3, 4)]`


If A = `[(0, 4, 3),(1, -3, -3),(-1, 4, 4)]`, then find A2 and hence find A−1 


If A = `[(1, 0, 0),(3, 3, 0),(5, 2, -1)]`, find A−1 by the adjoint method


If A = [aij]2×2, where aij = i – j, then A = ______


Find the adjoint of the matrix A = `[(2,3),(1,4)]`


Find the inverse of the following matrix:

`[(-3,-5,4),(-2,3,-1),(1,-4,-6)]`


If A = `[(2,-2,2),(2,3,0),(9,1,5)]` then, show that (adj A) A = O.


Solve by matrix inversion method:

3x – y + 2z = 13; 2x + y – z = 3; x + 3y – 5z = - 8


Solve by matrix inversion method:

x – y + 2z = 3; 2x + z = 1; 3x + 2y + z = 4


If A = `[(a,b),(c,d)]` such that ad - bc ≠ 0 then A-1 is


If A is 3 × 3 matrix and |A| = 4 then |A-1| is equal to:


Solve by using matrix inversion method:

x - y + z = 2, 2x - y = 0, 2y - z = 1


If A = `[(3, -3, 4), (2, -3, 4), (0, -1, 1)]` then A-1 = ______


If ω is a complex cube root of unity and A = `[(ω,0,0),(0,ω^2,0),(0,0,1)]` then A-1 = ?


If A = `[(2, 3),(a, 6)]` is a singular matrix, then a = ______.


If matrix P = `[(0, -tan (θ//2)),(tanθ//2, 0)]`, then find (I – P) `[(cosθ, -sinθ),(sinθ, cosθ)]`


If A = `[(1, 1, 0),(2, 1, 5),(1, 2, 1)]`, then a11A21 + a12A22 + a13A23 is equal to ______.


Find the inverse of the matrix `[(1, 1, 1),(1, 2, 3),(3, 2, 2)]` by elementary column transformation.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×