Advertisements
Advertisements
प्रश्न
Solve by matrix inversion method:
x – y + 2z = 3; 2x + z = 1; 3x + 2y + z = 4
उत्तर
The given system can be written as
`[(1,-1,2),(2,0,1),(3,2,1)][(x),(y),(z)] = [(3),(1),(4)]`
AX = B
Where A = `[(1,-1,2),(2,0,1),(3,2,1)]`, X = `[(x),(y),(z)]` and B = `[(3),(1),(4)]`
|A| = `|(1,-1,2),(2,0,1),(3,2,1)|`
= 1(0 – 2) – (-1)(2 – 3) + 2(4 – 0)
= -2 – (-1)(-1) + 2(4)
= -2 – 1 + 8
= 5
[Aij] = `[(-2,-(-1),4),(-|(-1,2),(2,1)|,|(1,2),(3,1)|,-|(1,-1),(3,2)|),(|(-1,2),(0,1)|,-|(1,2),(2,1)|,|(1,-1),(2,0)|)]`
`= [(-2,1,4),(-(-1-4),(1-6),-(2+3)),((-1-0),-(1-4),(0+2))]`
`=> [(-2,1,4),(5,-5,-5),(-1,3,2)]`
adj A = `["A"_"ij"]^"T" = [(-2,5,-1),(1,-5,3),(4,-5,2)]`
`"A"^-1 = 1/|"A"|`(adj A)
`= 1/(5)[(-2,5,-1),(1,-5,3),(4,-5,2)]`
X = A-1B
`= 1/(5)[(-2,5,-1),(1,-5,3),(4,-5,2)][(3),(1),(4)]`
`=> 1/(5)[(-6+5-4),(3-5+12),(12-5+8)]`
`=> 1/(5)[(-5),(10),(15)]`
`[(x),(y),(z)] = [(-1),(2),(3)]`
∴ x = -1, y = 2, z = 3.
APPEARS IN
संबंधित प्रश्न
Find the inverse of the matrix `[(1 2 3),(1 1 5),(2 4 7)]` by adjoint method
If A = `[(1, 3), (3, 1)]`, Show that A2 - 2A is a scalar matrix.
Find the inverse of the following matrix (if they exist):
`[(2,-3),(5,7)]`
Find the inverse of the following matrix (if they exist):
`[(3,-10),(2,-7)]`
If A = `[(1, 0, 1),(0, 2, 3),(1, 2, 1)] "and B" = [(1, 2, 3),(1, 1, 5),(2, 4, 7)]`, then find a matrix X such that XA = B.
Find inverse of the following matrices (if they exist) by elementary transformations :
`[(2, -3, 3),(2, 2, 3),(3, -2, 2)]`
If A = `[(3,7),(2,5)]` and B = `[(6,8),(7,9)]`, then verify that (AB)-1 = B-1A-1
If A = `((-1,2),(1,-4))` then A(adj A) is
If A and Bare square matrices of order 3 such that |A| = 2, |B| = 4, then |A(adj B)| = ______.
The matrix `[(lambda, 1, 0),(0, 3, 5),(0, -3, lambda)]` is invertible ______.