Advertisements
Advertisements
प्रश्न
If A = `[(3,7),(2,5)]` and B = `[(6,8),(7,9)]`, then verify that (AB)-1 = B-1A-1
उत्तर
Now AB = `[(3,7),(2,5)] [(6,8),(7,9)]`
`= [(18+49,24+63),(12+35,16+45)]`
`= [(67,87),(47,61)]`
|AB| = `= [(67,87),(47,61)]` = 4087 - 4089 = - 2
adj (AB) = `[(61,-87),(-47,67)]`
`("AB")^-1 = 1/|"AB"|` (adj AB)
`= 1/(-2) [(61,-87),(-47,67)]` ...(1)
Now we will find B-1A-1
B = `[(6,8),(7,9)]`, |B| = 54 - 56 = -2
adj B = `[(9,-8),(-7,6)]`
`"B"^-1 = 1/|"B"| ("adj B") = 1/(-2) [(9,-8),(-7,6)]`
A = `[(3,7),(2,5)]`, |A| = 15 - 14 = 1
adj A = `[(5,-7),(-2,3)]`
`"A"^-1 = 1/|"A"|` (adj A)
`= 1/1 [(5,-7),(-2,3)] = [(5,-7),(-2,3)]`
`"B"^-1"A"^-1 = 1/(-2)[(9,-8),(-7,6)][(5,-7),(-2,3)]`
`= 1/(-2)[(45+16,-63-24),(-35-12,49+18)]`
`= 1/(-2)[(61,-87),(-47,67)]` ......(2)
From (1) and (2),
(AB)-1 = B-1A-1
APPEARS IN
संबंधित प्रश्न
If A = `[(1,-1,2),(3,0,-2),(1,0,3)]` verify that A (adj A) = (adj A) A = | A | I
Find the inverse of the following matrix by the adjoint method.
`[(2,-2),(4,3)]`
Find the inverse of the following matrix (if they exist):
`((1,-1),(2,3))`
Find the inverse of the following matrix:
`[(-3,-5,4),(-2,3,-1),(1,-4,-6)]`
If A = `[(a,b),(c,d)]` such that ad - bc ≠ 0 then A-1 is
If A and B non-singular matrix then, which of the following is incorrect?
The inverse of the matrix A = `[(3, 0, 0),(0, 4, 0),(0, 0, 5)]` is ______.
If A = `[(2, -3, 3),(2, 2, 3),(3, "p", 2)]` and A–1 = `[(-2/5, 0, 3/5),(-1/5, 1/5, "q"),(2/5, 1/5, -2/5)]`, then ______.
The inverse of the matrix `[(1, 0, 0),(3, 3, 0),(5, 2, -1)]` is ______.
For an invertible matrix A, if A (adj A) = `|(20, 0),(0, 20)|`, then | A | = ______.