Advertisements
Advertisements
प्रश्न
If A = `[(3,7),(2,5)]` and B = `[(6,8),(7,9)]`, then verify that (AB)-1 = B-1A-1
उत्तर
Now AB = `[(3,7),(2,5)] [(6,8),(7,9)]`
`= [(18+49,24+63),(12+35,16+45)]`
`= [(67,87),(47,61)]`
|AB| = `= [(67,87),(47,61)]` = 4087 - 4089 = - 2
adj (AB) = `[(61,-87),(-47,67)]`
`("AB")^-1 = 1/|"AB"|` (adj AB)
`= 1/(-2) [(61,-87),(-47,67)]` ...(1)
Now we will find B-1A-1
B = `[(6,8),(7,9)]`, |B| = 54 - 56 = -2
adj B = `[(9,-8),(-7,6)]`
`"B"^-1 = 1/|"B"| ("adj B") = 1/(-2) [(9,-8),(-7,6)]`
A = `[(3,7),(2,5)]`, |A| = 15 - 14 = 1
adj A = `[(5,-7),(-2,3)]`
`"A"^-1 = 1/|"A"|` (adj A)
`= 1/1 [(5,-7),(-2,3)] = [(5,-7),(-2,3)]`
`"B"^-1"A"^-1 = 1/(-2)[(9,-8),(-7,6)][(5,-7),(-2,3)]`
`= 1/(-2)[(45+16,-63-24),(-35-12,49+18)]`
`= 1/(-2)[(61,-87),(-47,67)]` ......(2)
From (1) and (2),
(AB)-1 = B-1A-1
APPEARS IN
संबंधित प्रश्न
The adjoint matrix of `[(3, -3, 4),(2, -3, 4),(0, -1, 1)]` is ______.
The solution (x, y, z) of the equation `[(1, 0, 1),(-1, 1, 0),(0, -1, 1)] [(x),(y),(z)] = [(1),(1),(2)]` is (x, y, z) =
If A = `[(cos alpha, sin alpha),(-sin alpha, cos alpha)]`, then A10 = ______
If A = `[(1, 2, 3),(1, 1, 5),(2, 4, 7)]`, then find the value of a31A31 + a32A32 + a33A33.
Find the inverse of the following matrix:
`[(1,-1),(2,3)]`
Solve by matrix inversion method:
2x + 3y – 5 = 0; x – 2y + 1 = 0.
If A is non-singular matrix and (A + l)(A - l) = 0 then A + A-1 = ______.
The inverse of `[(1,cos alpha),(- cos alpha, -1)]` is ______.
If matrix A = `[(3, -2, 4),(1, 2, -1),(0, 1, 1)]` and A–1 = `1/k` (adj A), then k is ______.
If A = `[(1, 2, 3),(-1, 1, 2),(1, 2, 4)]` then (A2 – 5A)A–1 = ______.