मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

If A = [123115247], then find the value of a31A31 + a32A32 + a33A33. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If A = `[(1, 2, 3),(1, 1, 5),(2, 4, 7)]`, then find the value of a31A31 + a32A32 + a33A33.

बेरीज

उत्तर

We have,

A = `[(1, 2, 3),(1, 1, 5),(2, 4, 7)]`

a31 = 2, a32 = 4, a33 = 7

A31 = `|(2, 3),(1, 5)|` = 10 - 3 = 7

A32 = `- |(1, 3),(1, 5)|` = - (5 - 3) = - 2

A33 = `|(1, 2),(1, 1)|` = 1 - 2 = - 1

∴ a31A31 + a32A32 + a33A33 

= 2(7) + 4(-2) + 7(-1)

= 14 - 8 - 7 

= - 1

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1.2: Matrics - Very Short Answer

संबंधित प्रश्‍न

Find the inverse of the following matrix by elementary row transformations if it exists.
`A = [(1, 2, -2), (0, -2, 1), (-1, 3, 0)]`


Find the matrix of the co-factor for the following matrix.

`[(1,3),(4,-1)]`


Find the adjoint of the following matrix.

`[(2,-3),(3,5)]`


Find the inverse of the following matrix by the adjoint method.

`[(2,-2),(4,3)]`


Find the inverse of the following matrix (if they exist):

`((2,1),(1,-1))`


Choose the correct answer from the given alternatives in the following question:

If A = `[("cos"alpha,-"sin"alpha),("sin"alpha,"cos"alpha)]`, then A-1 = _____


Choose the correct answer from the given alternatives in the following question:

If A = `[("cos"alpha, - "sin"alpha,0),("sin"alpha,"cos"alpha,0),(0,0,1)]` where α ∈ R, then [F(α)]-1 is


Find the inverse of the following matrices by the adjoint method `[(1, 2, 3),(0, 2, 4),(0, 0, 5)]`.


Find the inverse of the following matrices by transformation method: `[(1, 2),(2, -1)]`


If A = `[(1, 2),(-3, -1)], "B" = [(-1, 0),(1, 5)]`, then AB = 


Fill in the blank :

If a1x + b1y = c1 and a2x + b2y = c2, then matrix form is `[(......, ......),(......, ......)] = [(x),(y)] = [(......),(......)]`


Find the inverse of `[(3, 1, 5),(2, 7, 8),(1, 2, 5)]` by adjoint method.


If A = `[(0, 0, -1),(0, -1, 0),(-1, 0, 0)]`, then the only correct statement about the matrix A is ______


If A = `[(3, 0, 0),(0, 3, 0),(0, 0, 3)]`, then |A| |adj A| = ______


For an invertible matrix A, if A . (adj A) = `[(10, 0),(0, 10)]`, then find the value of |A|.


If A = `[("a", "b"),("c", "d")]` then find the value of |A|−1 


Find the adjoint of matrix A = `[(6, 5),(3, 4)]`


If A = `[(1, 0, 0),(3, 3, 0),(5, 2, -1)]`, find A−1 by the adjoint method


If A = `[(1,3,3),(1,4,3),(1,3,4)]` then verify that A(adj A) = |A| I and also find A-1.


Find the inverse of the following matrix:

`[(1,-1),(2,3)]`


Find the inverse of the following matrix:

`[(1,2,3),(0,2,4),(0,0,5)]`


Find the inverse of the following matrix:

`[(-3,-5,4),(-2,3,-1),(1,-4,-6)]`


If A = `[(2,3),(1,-6)]` and B = `[(-1,4),(1,-2)]`, then verify adj (AB) = (adj B)(adj A)


If A-1 = `[(1,0,3),(2,1,-1),(1,-1,1)]`  then, find A.


Solve by matrix inversion method:

2x + 3y – 5 = 0; x – 2y + 1 = 0.


Solve by matrix inversion method:

2x – z = 0; 5x + y = 4; y + 3z = 5


The sum of three numbers is 20. If we multiply the first by 2 and add the second number and subtract the third we get 23. If we multiply the first by 3 and add second and third to it, we get 46. By using the matrix inversion method find the numbers.


If A = `|(1,1,1),(3,4,7),(1,-1,1)|` verify that A(adj A) = (adj A)(A) = |A|I3.


If A = `[(1,-1),(2,3)]` show that A2 - 4A + 5I2 = 0 and also find A-1.


If A = `[(p/4, 0, 0), (0, q/5, 0), (0, 0, r/6)]` and `"A"^-1 = [(1/4, 0, 0), (0, 1/5, 0), (0, 0, 1/6)]`, then p + q + r = ______ 


If A = `[(0, -1, 0), (1, 0, 0), (0, 0, -1)]`, then A-1 is ______ 


If A = `[(1 + 2"i", "i"),(- "i", 1 - 2"i")]`, where i = `sqrt-1`, then A(adj A) = ______.


If A and Bare square matrices of order 3 such that |A| = 2, |B| = 4, then |A(adj B)| = ______.


If A = `[(5, -4), (7, -5)]`, then 3A-1 =  ______ 


If AB = I and B = AT, then _______.


If `A = [[-3,1],[-4,3]]` and A-1 = αA, then α = ______.


If matrix A = `[(1, 2),(4, 3)]`, such that AX = I, then X is equal to ______.


If A = `[(2, 3),(4, 5)]`, show that A2 – 7A – 2I = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×