Advertisements
Advertisements
प्रश्न
Find the inverse of the following matrix:
`[(-3,-5,4),(-2,3,-1),(1,-4,-6)]`
उत्तर
Let A = `[(-3,-5,4),(-2,3,-1),(1,-4,-6)]`
|A| = `|(-3,-5,4),(-2,3,-1),(1,-4,-6)|`
`= -3|(3,-1),(-4,-6)| - (-5)|(-2,-1),(1,-6)| + 4|(-2,3),(1,-4)|`
= -3[-18 - 4] - (-5)[12 + 1] + 4[8 - 3]
= - 3[- 22]- (- 5)[13] + 4 [5]
= 66 + 65 20 = 151
[Aij] = `[(-22,-13,5),(-|(-5,4),(-4,-6)|,|(-3,4),(1,-6)|,-|(-3,-5),(1,-4)|),(|(-5,4),(3,-1)|,-|(-3,4),(-2,-1)|,|(-3,-5),(-2,3)|)]`
`= [(-22,-13,5),(-(30 + 16),(18-4),-(12+5)),(5-12,-(3+8),(-9-10))]`
`= [(-22,-13,5),(-46,14,-17),(-7,-11,-19)]`
adj A = [Aij]T = `[(-22,-46,-7),(-13,14,-11),(5,-17,-19)]`
`"A"^-1 = 1/|"A"|`adj A
`= 1/151[(-22,-46,-7),(-13,14,-11),(5,-17,-19)]`
APPEARS IN
संबंधित प्रश्न
Choose the correct answer from the given alternatives in the following question:
The inverse of a symmetric matrix is
Find inverse of the following matrices (if they exist) by elementary transformations :
`[(1, -1),(2, 3)]`
If f(x) = x2 − 2x − 3 then find f(A) when A = `[(1, 2),(2, 1)]`
If A = `[(6, 5),(5, 6)]` and B = `[(11, 0),(0, 11)]` then find A'B'
Show that the matrices A = `[(2,2,1),(1,3,1),(1,2,2)]` and B = `[(4/5,(-2)/5,(-1)/5),((-1)/5,3/5,(-1)/5),((-1)/5,(-2)/5,4/5)]` are inverses of each other.
If A and B non-singular matrix then, which of the following is incorrect?
The matrix M = `[(0,1,2),(1,2,3),(3,1,1)]` and its inverse is N = [nij]. What is the element n23 of matrix N?
The matrix A = `[("a",-1,4),(-3,0,1),(-1,1,2)]` is not invertible only if a = _______.
If A = `[(3, -3, 4), (2, -3, 4), (0, -1, 1)]` then A-1 = ______
The matrix `[(lambda, 1, 0),(0, 3, 5),(0, -3, lambda)]` is invertible ______.