Advertisements
Advertisements
प्रश्न
If A = `[(2,3),(1,-6)]` and B = `[(-1,4),(1,-2)]`, then verify adj (AB) = (adj B)(adj A)
उत्तर
AB = `[(2,3),(1,-6)] [(-1,4),(1,-2)]`
`= [(-2+3,8-6),(-1-6,4+12)] = [(1,2),(-7,16)]`
adj(AB) = `[(16,-2),(7,1)]` ....(1)
B = `[(-1,4),(1,-2)]` ∴ adj B = `[(-2,-4),(-1,-1)]`
A = `[(2,3),(1,-6)]` ∴ adj A = `[(-6,-3),(-1,2)]`
∴ (adj B)(adj A) = `[(-2,-4),(-1,-1)] [(-6,-3),(-1,2)]`
`= [(12 + 4, 6 - 8),(6 + 1, 3-2)]`
`= [(16,-2),(7,1)]` .....(2)
From (1) and (2),
adj (AB) = (adj B) (adj A)
APPEARS IN
संबंधित प्रश्न
Find the inverse of matrix A by using adjoint method; where A = `[(1, 0, 1), (0, 2, 3), (1, 2, 1)]`
Choose the correct answer from the given alternatives in the following question:
If A = `[(1,2),(3,4)]`, and A (adj A) = kI, then the value of k is
Fill in the blank :
If A = `[(3, -5),(2, 5)]`, then co-factor of a12 is _______
Fill in the blank :
(AT)T = _______
If A = `[(3, -3, 4), (2, -3, 4), (0, -1, 1)]` then A-1 = ______
If A = `[(1 + 2"i", "i"),(- "i", 1 - 2"i")]`, where i = `sqrt-1`, then A(adj A) = ______.
The inverse of the matrix A = `[(3, 0, 0),(0, 4, 0),(0, 0, 5)]` is ______.
If matrix P = `[(0, -tan (θ//2)),(tanθ//2, 0)]`, then find (I – P) `[(cosθ, -sinθ),(sinθ, cosθ)]`
For an invertible matrix A, if A (adj A) = `|(20, 0),(0, 20)|`, then | A | = ______.
If A = `[(1, 2, 4),(4, 3, -2),(1, 0, -3)]`. Show that A–1 exists and find A–1 using column transformation.