Advertisements
Advertisements
प्रश्न
Find the inverse of the following matrix:
`[(-3,-5,4),(-2,3,-1),(1,-4,-6)]`
उत्तर
Let A = `[(-3,-5,4),(-2,3,-1),(1,-4,-6)]`
|A| = `|(-3,-5,4),(-2,3,-1),(1,-4,-6)|`
`= -3|(3,-1),(-4,-6)| - (-5)|(-2,-1),(1,-6)| + 4|(-2,3),(1,-4)|`
= -3[-18 - 4] - (-5)[12 + 1] + 4[8 - 3]
= - 3[- 22]- (- 5)[13] + 4 [5]
= 66 + 65 20 = 151
[Aij] = `[(-22,-13,5),(-|(-5,4),(-4,-6)|,|(-3,4),(1,-6)|,-|(-3,-5),(1,-4)|),(|(-5,4),(3,-1)|,-|(-3,4),(-2,-1)|,|(-3,-5),(-2,3)|)]`
`= [(-22,-13,5),(-(30 + 16),(18-4),-(12+5)),(5-12,-(3+8),(-9-10))]`
`= [(-22,-13,5),(-46,14,-17),(-7,-11,-19)]`
adj A = [Aij]T = `[(-22,-46,-7),(-13,14,-11),(5,-17,-19)]`
`"A"^-1 = 1/|"A"|`adj A
`= 1/151[(-22,-46,-7),(-13,14,-11),(5,-17,-19)]`
APPEARS IN
संबंधित प्रश्न
Find the inverse of the following matrices by the adjoint method `[(2, -2),(4, 5)]`.
Find the inverse of the following matrices by the adjoint method `[(1, 2, 3),(0, 2, 4),(0, 0, 5)]`.
Fill in the blank :
If a1x + b1y = c1 and a2x + b2y = c2, then matrix form is `[(......, ......),(......, ......)] = [(x),(y)] = [(......),(......)]`
If A = `[(3,7),(2,5)]` and B = `[(6,8),(7,9)]`, then verify that (AB)-1 = B-1A-1
If X = `[(8,-1,-3),(-5,1,2),(10,-1,-4)]` and Y = `[(2,1,-1),(0,2,1),(5,p,q)]` then, find p, q if Y = X-1
If A and Bare square matrices of order 3 such that |A| = 2, |B| = 4, then |A(adj B)| = ______.
If a 3 × 3 matrix A has its inverse equal to A, then A2 = ______
The matrix `[(lambda, 1, 0),(0, 3, 5),(0, -3, lambda)]` is invertible ______.
If the inverse of the matrix `[(α, 14, -1),(2, 3, 1),(6, 2, 3)]` does not exist, then the value of α is ______.
If A = `[(2, 3),(4, 5)]`, show that A2 – 7A – 2I = 0