Advertisements
Advertisements
प्रश्न
Choose the correct answer from the given alternatives in the following question:
If A = `[("cos"alpha,-"sin"alpha),("sin"alpha,"cos"alpha)]`, then A-1 = _____
पर्याय
`[(1/("cos"alpha),-1/("sin" alpha)),(1/("sin"alpha),1/("cos"alpha))]`
`[("cos"alpha,"sin"alpha),(-"sin"alpha, "cos"alpha)]`
`[(-"cos"alpha,"sin"alpha),(-"sin"alpha, "cos"alpha)]`
`[(-"cos"alpha,"sin"alpha),("sin"alpha, -"cos"alpha)]`
उत्तर
`[("cos"alpha,"sin"alpha),(-"sin"alpha, "cos"alpha)]`
Explanation:
A = `[("cos"alpha,-"sin"alpha),("sin"alpha,"cos"alpha)]`
|A| = cos2α + sin2α = 1
A−1 = `1/|"A"| "Adj"("A") = 1/1 [("cos"alpha,"sin"alpha),(-"sin"alpha, "cos"alpha)]`
APPEARS IN
संबंधित प्रश्न
Find the inverse of matrix A by using adjoint method; where A = `[(1, 0, 1), (0, 2, 3), (1, 2, 1)]`
Find the inverse of the following matrix by elementary row transformations if it exists.
`A = [(1, 2, -2), (0, -2, 1), (-1, 3, 0)]`
Solve the following equations by the inversion method :
2x + 3y = - 5 and 3x + y = 3.
Find the matrix of the co-factor for the following matrix.
`[(1,3),(4,-1)]`
Find the adjoint of the following matrix.
`[(1, -1, 2),(-2, 3, 5),(-2, 0, -1)]`
Find the inverse of the following matrix by the adjoint method.
`[(-1,5),(-3,2)]`
Find the inverse of the following matrix.
`[(2, -3),(-1, 2)]`
Find the inverse of the following matrix (if they exist):
`((1,-1),(2,3))`
Choose the correct answer from the given alternatives in the following question:
If A = `[(lambda,1),(-1, -lambda)]`, and A-1 does not exist if λ = _______
Choose the correct answer from the given alternatives in the following question:
If A = `[("cos"alpha, - "sin"alpha,0),("sin"alpha,"cos"alpha,0),(0,0,1)]` where α ∈ R, then [F(α)]-1 is
Choose the correct alternative.
If A is a 2 x 2 matrix such that A(adj. A) = `[(5, 0),(0, 5)]`, then |A| = _______
State whether the following is True or False :
A = `[(2, 1),(10, 5)]` is invertible matrix.
State whether the following is True or False :
Singleton matrix is only row matrix.
Check whether the following matrices are invertible or not:
`[(3, 4, 3),(1, 1, 0),(1, 4, 5)]`
If A = `[(3, 0, 0),(0, 3, 0),(0, 0, 3)]`, then |A| |adj A| = ______
For an invertible matrix A, if A . (adj A) = `[(10, 0),(0, 10)]`, then find the value of |A|.
If A = `[(3, 1),(5, 2)]`, and AB = BA = I, then find the matrix B
If f(x) = x2 − 2x − 3 then find f(A) when A = `[(1, 2),(2, 1)]`
If A = `[(-1),(2),(3)]`, B = `[(3, 1, -2)]`, find B'A'
The value of Minor of element b22 in matrix B = `[(2, -2),(4, 5)]` is ______
Find the inverse of matrix B = `[(3,1, 5),(2, 7, 8),(1, 2, 5)]` by using adjoint method
Complete the following activity to find inverse of matrix using elementary column transformations and hence verify.
`[(2, 0, -1),(5, 1, 0),(0, 1, 3)]` B−1 = `[(1, 0, 0),(0, 1, 0),(0, 0, 1)]`
C1 → C1 + C3
`[("( )", 0, -1),("( )", 1, 0),("( )", 1, 3)]` B−1 = `[("( )", 0, 0),("( )", 1, 0),("( )", 0, 1)]`
C3 → C3 + C1
`[(1, 0, 0),("( )", 1, "( )"),(3, 1, "( )")]` B−1 = `[(1, 0, "( )"),(0, 1, 0),("( )", 0, "( )")]`
C1 → C1 – 5C2, C3 → C3 – 5C2
`[(1, "( )", 0),(0, 1, 0),("( )", 1, "( )")]` B−1 = `[(1, 0, "( )"),("( )", 1, -5),(1, "( )", 2)]`
C1 → C1 – 2C3, C2 → C2 – C3
`[(1, 0, 0),(0, 1, 0),(0, 0, 1)]` B−1 = `[(3, -1, "( )"),("( )", 6, -5),(5, "( )", "( )")]`
B−1 = `[("( )", "( )", "( )"),("( )", "( )", "( )"),("( )", "( )", "( )")]`
`[(2, "( )", -1),("( )", 1, 0),(0, 1, "( )")] [(3, "( )", "( )"),("( )", 6, "( )"),("( )", -2, "( )")] = [(1, 0, 0),(0, 1, 0),(0, 0, 1)]`
Find the adjoint of the matrix A = `[(2,3),(1,4)]`
Find the inverse of the following matrix:
`[(1,-1),(2,3)]`
Solve by matrix inversion method:
2x – z = 0; 5x + y = 4; y + 3z = 5
The inverse matrix of `((3,1),(5,2))` is
If A = `[(1,-1),(2,3)]` show that A2 - 4A + 5I2 = 0 and also find A-1.
If A = `[(p/4, 0, 0), (0, q/5, 0), (0, 0, r/6)]` and `"A"^-1 = [(1/4, 0, 0), (0, 1/5, 0), (0, 0, 1/6)]`, then p + q + r = ______
If A is non-singular matrix and (A + l)(A - l) = 0 then A + A-1 = ______.
If ω is a complex cube root of unity and A = `[(ω,0,0),(0,ω^2,0),(0,0,1)]` then A-1 = ?
If A = `[(2, -3), (3, 5)]`, then |Adj A| is equal to ______
If AB = I and B = AT, then _______.
The matrix `[(lambda, 1, 0),(0, 3, 5),(0, -3, lambda)]` is invertible ______.
If A = `[(cos α, sin α),(- sin α, cos α)]`, then the matrix A is ______.
If A = `[(2, 3),(4, 5)]`, show that A2 – 7A – 2I = 0