मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Find the adjoint of the following matrix. [1-12-235-20-1] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the adjoint of the following matrix.

`[(1, -1, 2),(-2, 3, 5),(-2, 0, -1)]`

बेरीज

उत्तर

Let A = `[(1, -1, 2),(-2, 3, 5),(-2, 0, -1)]`

Now, M11 = `|(3, 5),(0, -1)|` = −3 − 0 = −3

∴ A11 = (−1)1+1(− 3) = −3

M12 = `|(-2, 5),(-2, -1)|` = 2 + 10 = 12

∴ A12 = (−1)1+2(12) = −12

M13 = `|(-2, 3),(-2, 0)|` = 0 + 6 = 6

∴ A13 = (− 1)1+3(6) = 6

M21 = `|(-1,2),(0,-1)|` = 1 − 0 = 1

∴ A21 = (−1)2+1(1) = −1

M22 = `|(1, 2),(-2, -1)|` = −1 + 4 = 3

∴ A22 = (−1)2+2(3) = 3

M23 = `|(1, -1),(-2, 0)|` = 0 − 2 = −2

∴ A23 = (−1)2+3(−2) = 2

M31 = `|(-1, 2),(3, 5)|` = −5 − 6 = −11

∴ A31 = (−1)3+1(−11) = −11

M32 = `|(1, 2),(-2, 5)|` = 5 + 4 = 9

∴ A32 = (−1)3+2(9) = −9

M33 = `|(1, -1),(-2, 3)|` = 3 − 2 = 1

∴ A33 = (−1)3+3(1) = 1

The co-factor matrix = `[("A"_11, "A"_12, "A"_13),("A"_21, "A"_22, "A"_23),("A"_31, "A"_32, "A"_33)]`

∴ adj A = `[(-3, -12, 6),(-1, 3, 2),(-11, -9, 1)]^"T"`

= `[(-3, -1, -11),(-12, 3, -9),(6, 2, 1)]`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Matrics - Exercise 2.2 [पृष्ठ ५१]

संबंधित प्रश्‍न

If A = `[(1, 3), (3, 1)]`, Show that A2 - 2A is a scalar matrix.


Find the adjoint of the following matrix.

`[(2,-3),(3,5)]`


Find the inverse of the following matrix.

`[(0,1,2),(1,2,3),(3,1,1)]`


Find the inverse of the following matrix (if they exist):

`((2,1),(1,-1))`


Choose the correct answer from the given alternatives in the following question:

If A = `[("cos"alpha,-"sin"alpha),("sin"alpha,"cos"alpha)]`, then A-1 = _____


Choose the correct answer from the given alternatives in the following question:

The inverse of a symmetric matrix is


Choose the correct answer from the given alternatives in the following question:

If A−1 = `- 1/2[(1,-4),(-1,2)]`, then A = ______.


Find the inverse of the following matrices by transformation method:

`[(2, 0, −1),(5, 1, 0),(0, 1, 3)]`


Choose the correct alternative.

If a 3 x 3 matrix B has it inverse equal to B, thenB2 = _______


Choose the correct alternative.

If A is a 2 x 2 matrix such that A(adj. A) = `[(5, 0),(0, 5)]`, then |A| = _______


Fill in the blank :

If a1x + b1y = c1 and a2x + b2y = c2, then matrix form is `[(......, ......),(......, ......)] = [(x),(y)] = [(......),(......)]`


State whether the following is True or False :

If A and B are conformable for the product AB, then (AB)T = ATBT.


State whether the following is True or False :

A(adj. A) = |A| I, where I is the unit matrix.


Check whether the following matrices are invertible or not:

`[(3, 4, 3),(1, 1, 0),(1, 4, 5)]`


The solution (x, y, z) of the equation `[(1, 0, 1),(-1, 1, 0),(0, -1, 1)] [(x),(y),(z)] = [(1),(1),(2)]` is (x, y, z) =


If ω is a complex cube root of unity, then the matrix A = `[(1, ω^2, ω),(ω^2, ω, 1),(ω, 1, ω^2)]` is


If A = `[(1, -1, 1),(2, 1, -3),(1, 1, 1)]`, 10B = `[(4, 2,2),(-5, 0, ∞),(1, -2, 3)]` and B is the inverse of matrix A, then α = ______


For an invertible matrix A, if A . (adj A) = `[(10, 0),(0, 10)]`, then find the value of |A|.


If A = `[(2, 2),(-3, 2)]` and B = `[(0, -1),(1, 0)]`, then find the matrix (B−1 A−1)−1.


If A = `[(2, 4),(1, 3)]` and B = `[(1, 1),(0, 1)]` then find (A−1 B−1)


If A = `[(0, 1),(2, 3),(1, -1)]` and B = `[(1, 2, 1),(2, 1, 0)]`, then find (AB)−1 


If A = `[(1, 0, 0),(3, 3, 0),(5, 2, -1)]`, find A−1 by the adjoint method


The value of Minor of element b22 in matrix B = `[(2, -2),(4, 5)]` is ______


Complete the following activity to find inverse of matrix using elementary column transformations and hence verify.

`[(2, 0, -1),(5, 1, 0),(0, 1, 3)]` B−1 = `[(1, 0, 0),(0, 1, 0),(0, 0, 1)]`

C1 → C1 + C3

`[("( )", 0, -1),("( )", 1, 0),("( )", 1, 3)]` B−1 = `[("( )", 0, 0),("( )", 1, 0),("( )", 0, 1)]`

C3 → C3 + C1 

`[(1, 0, 0),("( )", 1, "( )"),(3, 1, "( )")]` B−1 = `[(1, 0, "( )"),(0, 1, 0),("( )", 0, "( )")]`

C1 → C1 – 5C2, C3 → C3 – 5C2

`[(1, "( )", 0),(0, 1, 0),("( )", 1, "( )")]` B−1 = `[(1, 0, "( )"),("( )", 1, -5),(1, "( )", 2)]`

C1 → C1 – 2C3, C2 → C2 – C

`[(1, 0, 0),(0, 1, 0),(0, 0, 1)]` B−1 = `[(3, -1, "( )"),("( )", 6, -5),(5, "( )", "( )")]`

B−1 =  `[("( )", "( )", "( )"),("( )", "( )", "( )"),("( )", "( )", "( )")]`

`[(2, "( )", -1),("( )", 1, 0),(0, 1, "( )")] [(3, "( )", "( )"),("( )", 6, "( )"),("( )", -2, "( )")] = [(1, 0, 0),(0, 1, 0),(0, 0, 1)]`


If A = `[(1,3,3),(1,4,3),(1,3,4)]` then verify that A(adj A) = |A| I and also find A-1.


Find the inverse of the following matrix:

`[(3,1),(-1,3)]`


Find the inverse of the following matrix:

`[(1,2,3),(0,2,4),(0,0,5)]`


If A-1 = `[(1,0,3),(2,1,-1),(1,-1,1)]`  then, find A.


If A = `[(3,7),(2,5)]` and B = `[(6,8),(7,9)]`, then verify that (AB)-1 = B-1A-1


If A = `((-1,2),(1,-4))` then A(adj A) is


If A is 3 × 3 matrix and |A| = 4 then |A-1| is equal to:


Solve by using matrix inversion method:

x - y + z = 2, 2x - y = 0, 2y - z = 1


If A = `[(1,2),(3,-5)]`, then A-1 = ?


If the inverse of the matrix A = `[(1, 1, -1), (1, -2, 1), (2, -1, -3)]` is `1/9 [(7, 4, -1), (5, -1, -2), (3, 3, a)]`, then a is equal to ______ 


Find the cofactors of the elements of the matrix

`[(-1, 2),(-3, 4)]`


The inverse of the matrix `[(1, 0, 0),(3, 3, 0),(5, 2, -1)]` is ______.


For a invertible matrix A if A(adjA) = `[(10, 0),(0, 10)]`, then |A| = ______.


If the inverse of the matrix `[(α, 14, -1),(2, 3, 1),(6, 2, 3)]` does not exist, then the value of α is ______.


If A = `[(1, 2, 4),(4, 3, -2),(1, 0, -3)]`. Show that A–1 exists and find A–1 using column transformation.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×