Advertisements
Advertisements
प्रश्न
If A = `[(1, 3), (3, 1)]`, Show that A2 - 2A is a scalar matrix.
उत्तर
A2 = A . A
= `[(1,3), (3, 1)] [(1,3), (3, 1)]`
= `[(10, 6), (6, 10)]`
A2 - 2A = `[(10, 6), (6, 10)] - 2[(1, 3), (3, 1)]`
A2 - 2A = `[(10, 6), (6, 10)] - [(2, 6), (6, 2)]`
A2 - 2A = `[(8, 0), (0, 8)]`
∴ A2 - 2A is a scalar matrix.
APPEARS IN
संबंधित प्रश्न
The sum of three numbers is 6. If we multiply the third number by 3 and add it to the second number we get 11. By adding first and third numbers we get a number, which is double than the second number. Use this information and find a system of linear equations. Find these three numbers using matrices.
Find the inverse of the matrix `[(1 2 3),(1 1 5),(2 4 7)]` by adjoint method
Find the co-factor of the element of the following matrix.
`[(1,-1,2),(-2,3,5),(-2,0,-1)]`
Find the inverse of the following matrix.
`[(2, -3),(-1, 2)]`
Find the inverse of the following matrix (if they exist):
`((1,-1),(2,3))`
Find the inverse of the following matrix (if they exist):
`[(2,-3),(5,7)]`
Find the inverse of `[(1,2,3),(1,1,5),(2,4,7)]` by the adjoint method.
Choose the correct answer from the given alternatives in the following question:
If A = `[(lambda,1),(-1, -lambda)]`, and A-1 does not exist if λ = _______
Choose the correct answer from the given alternatives in the following question:
If A = `[("cos"alpha,-"sin"alpha),("sin"alpha,"cos"alpha)]`, then A-1 = _____
Choose the correct answer from the given alternatives in the following question:
If A−1 = `- 1/2[(1,-4),(-1,2)]`, then A = ______.
Find the inverse of the following matrices by the adjoint method `[(3, -1),(2, -1)]`.
Find the inverse of the following matrices by transformation method:
`[(2, 0, −1),(5, 1, 0),(0, 1, 3)]`
If A = `[(1, 0, 1),(0, 2, 3),(1, 2, 1)] "and B" = [(1, 2, 3),(1, 1, 5),(2, 4, 7)]`, then find a matrix X such that XA = B.
Choose the correct alternative.
If A is a 2 x 2 matrix such that A(adj. A) = `[(5, 0),(0, 5)]`, then |A| = _______
Fill in the blank :
If A = [aij]2x3 and B = [bij]mx1 and AB is defined, then m = _______
Fill in the blank :
If a1x + b1y = c1 and a2x + b2y = c2, then matrix form is `[(......, ......),(......, ......)] = [(x),(y)] = [(......),(......)]`
If `[(x - y - z),(-y + z),(z)] = [(0),(5),(3)]`, then the value of x, y and z are respectively ______
If A = `[(2, 2),(-3, 2)]` and B = `[(0, -1),(1, 0)]`, then find the matrix (B−1 A−1)−1.
If A = `[("a", "b"),("c", "d")]` then find the value of |A|−1
If A = `[(1, 2),(3, -2),(-1, 0)]` and B = `[(1, 3, 2),(4, -1, 3)]` then find the order of AB
Find A–1 using adjoint method, where A = `[(cos theta, sin theta),(-sin theta, cos theta)]`
If A = [aij]2×2, where aij = i – j, then A = ______
A sales person Ravi has the following record of sales for the month of January, February and March 2009 for three products A, B and C. He has been paid a commission at fixed rate per unit but at varying rates for products A, B and C.
Months | Sales in units | Commission | ||
A | B | C | ||
January | 9 | 10 | 2 | 800 |
February | 15 | 5 | 4 | 900 |
March | 6 | 10 | 3 | 850 |
Find the rate of commission payable on A, B and C per unit sold using matrix inversion method.
The sum of three numbers is 20. If we multiply the first by 2 and add the second number and subtract the third we get 23. If we multiply the first by 3 and add second and third to it, we get 46. By using the matrix inversion method find the numbers.
The matrix M = `[(0,1,2),(1,2,3),(3,1,1)]` and its inverse is N = [nij]. What is the element n23 of matrix N?
If A = `[(x,1),(1,0)]` and A = A , then x = ______.
If A = `[(p/4, 0, 0), (0, q/5, 0), (0, 0, r/6)]` and `"A"^-1 = [(1/4, 0, 0), (0, 1/5, 0), (0, 0, 1/6)]`, then p + q + r = ______
If A = `[(5, -4), (7, -5)]`, then 3A-1 = ______
If AB = I and B = AT, then _______.
If A is a solution of x2 - 4x + 3 = 0 and `A=[[2,-1],[-1,2]],` then A-1 equals ______.
If A = `[(2, 2),(4, 5)]` and A–1 = λ(adj(A)), then λ = ______ .
If A = `[(cos theta, sin theta, 0),(-sintheta, costheta, 0),(0, 0, 1)]`, where A11, A11, A13 are co-factors of a11, a12, a13 respectively, then the value of a11A11 + a12A12 + a13A13 = ______.
If matrix A = `[(1, -1),(2, 3)]` such that AX = I, then X is equal to ______.
If the inverse of the matrix `[(α, 14, -1),(2, 3, 1),(6, 2, 3)]` does not exist, then the value of α is ______.
If A = `[(2, 2),(-3, 2)]`, B = `[(0, -1),(1, 0)]`, then (B–1 A–1)–1 is equal to ______.
If A = `[(3, 1),(-1, 2)]`, show that A2 – 5A + 7I = 0