मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Find the Inverse of the Matrix ⎡ ⎢ ⎣ 1 2 3 1 1 5 2 4 7 ⎤ ⎥ ⎦ by Adjoint Method - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the inverse of the matrix `[(1      2     3),(1    1     5),(2    4     7)]` by adjoint method

बेरीज

उत्तर

Let A = `[(1       2     3),(1     1     5),(2     4     7)]`

A11 = (-1)1+1 M11 = (-1)2 (7 - 20) = -13 

A12 = (-1 )1+2

M12 = (-1)3 (7 - 10) = 3 
A13 = (-1 )1+3

M13 = (-1)4 (4 - 2) = 2 

A21 = (-1 )2+1 M21 = (-1)3 (14 - 12) = -2 
A22 = (-1 )2+2 M22 = (-1)4 (7 - 6) = 1 
A23 = (-1 )2+3 M23 = (-1)5 (4 - 4) = 0
A31 = (-1 ) 3+1 M31 = (-1)4 (10 - 3) = 7 
A32 = (-1 )3+2 M32 = (-1)5 (5 - 3) = -2
A33 = (-1 )3+3 M33 = (-1)6 (1 - 2) = -1

∴ Matrix of cofactor = `[(-13,3,2),(-2,1,0),(7,-2, -1)]`

Adj A = Transpose of the cofactor matrix [cij]

i.e. Adj A = [cij]' = `[(-13,-2,7),(3,1 ,-2),(2,0,-1)]`

Now , determinant of A is |A| = `[(1,2,3),(1 ,1, 5),(2 ,4 ,7)]`

= 1(7 - 20) - 2(7 - 10) + 3(4 - 2)

= 1(-13) - 2(-3) + 3(2)

= -13 + 6 + 6 = -1

∴ |A| = -1 ≠ 0

Now inverse of A is A-1 = `1/|"A"|` × Adj A

= `1/-1 [(-13,-2,7),(3,1,-2),(2,0,-1)]`

∴ A-1 = `[(13,2,-7),(-3,-1,2),(-2,0,1)]`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2016-2017 (March)

APPEARS IN

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

 Find the inverse of the following matrix by elementary row transformations if it exists. `A=[[1,2,-2],[0,-2,1],[-1,3,0]]`


If A = `[(1, 3), (3, 1)]`, Show that A2 - 2A is a scalar matrix.


Find the co-factor of the element of the following matrix:

`[(-1, 2),(-3, 4)]`


Find the adjoint of the following matrix.

`[(1, -1, 2),(-2, 3, 5),(-2, 0, -1)]`


Find the inverse of the following matrix by the adjoint method.

`[(2,-2),(4,3)]`


Choose the correct answer from the given alternatives in the following question:

The inverse of A = `[(0,1,0),(1,0,0),(0,0,1)]` is


Find the inverse of the following matrices by the adjoint method `[(3, -1),(2, -1)]`.


Find the inverse of the following matrices by the adjoint method `[(2, -2),(4, 5)]`.


Find the inverse of the following matrices by the adjoint method `[(1, 2, 3),(0, 2, 4),(0, 0, 5)]`.


Find matrix X, if AX = B, where A = `[(1, 2, 3),(-1, 1, 2),(1, 2, 4)] "and B" = [(1),(2),(3)]`.


If A is a no singular matrix, then det (A–1) = _______


Fill in the blank :

If A = `[(3, -5),(2, 5)]`, then co-factor of a12 is _______


Fill in the blank :

If A = [aij]mxm is a non-singular matrix, then A–1 = `(1)/(......)` adj(A).


State whether the following is True or False :

If A and B are conformable for the product AB, then (AB)T = ATBT.


Find inverse of the following matrices (if they exist) by elementary transformations :

`[(2, -3, 3),(2, 2, 3),(3, -2, 2)]`


If `[(x - y - z),(-y + z),(z)] = [(0),(5),(3)]`, then the value of x, y and z are respectively ______


If A = `[(0, 4, 3),(1, -3, -3),(-1, 4, 4)]`, then find A2 and hence find A−1 


If A = `[(1,3,3),(1,4,3),(1,3,4)]` then verify that A(adj A) = |A| I and also find A-1.


If A = `[(2,-2,2),(2,3,0),(9,1,5)]` then, show that (adj A) A = O.


If A = `[(3,7),(2,5)]` and B = `[(6,8),(7,9)]`, then verify that (AB)-1 = B-1A-1


The sum of three numbers is 20. If we multiply the first by 2 and add the second number and subtract the third we get 23. If we multiply the first by 3 and add second and third to it, we get 46. By using the matrix inversion method find the numbers.


Which of the following matrix has no inverse


If A = `((-1,2),(1,-4))` then A(adj A) is


Solve by using matrix inversion method:

x - y + z = 2, 2x - y = 0, 2y - z = 1


If A = `[(4,5),(2,1)]` and A2 - 5A - 6l = 0, then A-1 = ?


If A is non-singular matrix such that (A - 2l)(A - 4l) = 0 then A + 8A-1 = ______.


The matrix `[(lambda, 1, 0),(0, 3, 5),(0, -3, lambda)]` is invertible ______.


If A = `[(cos theta, sin theta, 0),(-sintheta, costheta, 0),(0, 0, 1)]`, where A11, A11, A13 are co-factors of a11, a12, a13 respectively, then the value of a11A11 + a12A12 + a13A13 = ______.


If A–1  = `[(3, -1, 1),(-15, 6, -5),(5, -2, 2)]`, then adj A = ______.


The inverse of the matrix A = `[(3, 0, 0),(0, 4, 0),(0, 0, 5)]` is ______.


If A = `[(0, 0, 1),(0, 1, 0),(1, 0, 0)]`, then A2008 is equal to ______.


The number of solutions of equation x2 – x3 = 1, – x1 + 2x3 = 2, x1 – 2x2 = 3 is ______.


If A = `[(x, 1),(1, 0)]` and A = A–1, then x = ______.


If the inverse of the matrix `[(α, 14, -1),(2, 3, 1),(6, 2, 3)]` does not exist, then the value of α is ______.


If matrix A = `[(1, 2),(4, 3)]`, such that AX = I, then X is equal to ______.


If A = `[(1, 2),(3, 4)]` verify that A (adj A) = (adj A) A = |A| I


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×