मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Fill in the blank : If A = [aij]mxm is a non-singular matrix, then A–1 = 1...... adj(A). - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Fill in the blank :

If A = [aij]mxm is a non-singular matrix, then A–1 = `(1)/(......)` adj(A).

रिकाम्या जागा भरा

उत्तर

If A = [aij]mxm is a non-singular matrix, then A–1 = `(1)/(|"A"|)` adj(A).

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Matrices - Miscellaneous Exercise 2 [पृष्ठ ८३]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
पाठ 2 Matrices
Miscellaneous Exercise 2 | Q 2.07 | पृष्ठ ८३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the inverse of the matrix `[(1      2     3),(1    1     5),(2    4     7)]` by adjoint method


Find the matrix of the co-factor for the following matrix.

`[(1,3),(4,-1)]`


Find the matrix of the co-factor for the following matrix.

`[(1, 0, 2),(-2, 1, 3),(0, 3, -5)]`


Find the inverse of the following matrix (if they exist):

`((2,1),(1,-1))`


Find the inverse of the following matrix (if they exist):

`[(2,1),(7,4)]`


Choose the correct answer from the given alternatives in the following question:

If A = `[("cos"alpha,-"sin"alpha),("sin"alpha,"cos"alpha)]`, then A-1 = _____


Choose the correct answer from the given alternatives in the following question:

If A−1 = `- 1/2[(1,-4),(-1,2)]`, then A = ______.


Find the inverse `[(1, 2, 3 ),(1, 1, 5),(2, 4, 7)]` of the elementary row tranformation.


State whether the following is True or False :

A(adj. A) = |A| I, where I is the unit matrix.


Check whether the following matrices are invertible or not:

`[(1, 0),(0, 1)]`


Find inverse of the following matrices (if they exist) by elementary transformations :

`[(2, 0, -1),(5, 1, 0),(0, 1, 3)]`


The adjoint matrix of `[(3, -3, 4),(2, -3, 4),(0, -1, 1)]` is ______.


A = `[(cos alpha, - sin alpha,  0),(sin alpha, cos alpha,  0),(0, 0, 1)]`, then A−1 is


The solution (x, y, z) of the equation `[(1, 0, 1),(-1, 1, 0),(0, -1, 1)] [(x),(y),(z)] = [(1),(1),(2)]` is (x, y, z) =


`cos theta [(cos theta, sin theta),(-sin theta, cos  theta)] + sin theta [(sin theta, - cos theta),(cos theta, sin theta)]` = ______


If A = `[(3, 0, 0),(0, 3, 0),(0, 0, 3)]`, then |A| |adj A| = ______


A = `[(cos theta, - sin theta),(-sin theta, -cos theta)]` then find A−1 


If A = `[(1, 2),(3, -2),(-1, 0)]` and B = `[(1, 3, 2),(4, -1, 3)]` then find the order of AB


If A = `[(0, 3, 3),(-3, 0, -4),(-3, 4, 0)]` and B = `[(x),(y),(z)]`, find the matrix B'(AB)


If A = `[(0, 4, 3),(1, -3, -3),(-1, 4, 4)]`, then find A2 and hence find A−1 


Find the inverse of A = `[(sec theta, tan theta, 0),(tan theta, sec theta, 0),(0, 0, 1)]`


If A = `[(1, 0, 0),(3, 3, 0),(5, 2, -1)]`, find A−1 by the adjoint method


If A = `[(2,3),(1,-6)]` and B = `[(-1,4),(1,-2)]`, then verify adj (AB) = (adj B)(adj A)


If A = `[(2,-2,2),(2,3,0),(9,1,5)]` then, show that (adj A) A = O.


Show that the matrices A = `[(2,2,1),(1,3,1),(1,2,2)]` and B = `[(4/5,(-2)/5,(-1)/5),((-1)/5,3/5,(-1)/5),((-1)/5,(-2)/5,4/5)]` are inverses of each other.


Solve by matrix inversion method:

x – y + 2z = 3; 2x + z = 1; 3x + 2y + z = 4


adj (AB) is equal to:


If A is 3 × 3 matrix and |A| = 4 then |A-1| is equal to:


The matrix A = `[("a",-1,4),(-3,0,1),(-1,1,2)]` is not invertible only if a = _______.


The sum of the cofactors of the elements of second row of the matrix `[(1, 3, 2), (-2, 0, 1), (5, 2, 1)]` is ____________.


If A is non-singular matrix and (A + l)(A - l) = 0 then A + A-1 = ______.


If A = `[(2, -3), (3, 5)]`, then |Adj A| is equal to ______ 


If A is a solution of x2 - 4x + 3 = 0 and `A=[[2,-1],[-1,2]],` then A-1 equals ______.


If A = `[(2, 3),(a, 6)]` is a singular matrix, then a = ______.


The inverse of the matrix `[(1, 0, 0),(3, 3, 0),(5, 2, -1)]` is ______.


For a invertible matrix A if A(adjA) = `[(10, 0),(0, 10)]`, then |A| = ______.


If A = `[(2, 2),(-3, 2)]`, B = `[(0, -1),(1, 0)]`, then (B–1 A–1)–1 is equal to ______.


If matrix A = `[(1, -1),(2, 3)]`, then A2 – 4A + 5I is where I is a unit matix.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×