Advertisements
Advertisements
प्रश्न
Find the inverse of A = `[(sec theta, tan theta, 0),(tan theta, sec theta, 0),(0, 0, 1)]`
उत्तर
|A| = `[(sec theta, tan theta, 0),(tan theta, sec theta, 0),(0, 0, 1)]`
= sec θ(sec θ – 0) – tan θ(tan θ – 0) + 0
= sec2θ – tan2θ
= 1 ≠ 0
∴ A−1 exists.
Consider AA−1 = I
∴ `[(sec theta, tan theta, 0),(tan theta, sec theta, 0),(0, 0, 1)]` A−1 = `[(1, 0, 0),(0, 1, 0),(0, 0, 1)]`
Applying R1 → (sec θ)R1 – (tan θ)R2, we get
`[(sec^2theta - tan^2theta, sectheta tantheta - sectheta tantheta, 0),(tantheta, sectheta, 0),(0, 0, 1)]` A−1 = `[(sectheta, -tantheta, 0),(0, 1, 0),(0, 0, 1)]`
∴ `[(1, 0, 0),(tantheta, sectheta, 0),(0, 0, 1)]` A−1 = `[(sectheta, -tantheta, 0),(0, 1, 0),(0, 0, 1)]`
Applying R2 → R2 – tanθ R1, we get
`[(1, 0, 0),(0, sectheta, 0),(0, 0, 1)]` A−1 = `[(sectheta, -tantheta, 0),(-sectantheta, 1 + tan^2theta, 0),(0, 0, 1)]`
∴ `[(1, 0, 0),(0, sectheta, 0),(0, 0, 1)]` A−1 = `[(sectheta, -tantheta, 0),(-sectantheta, sec^2theta, 0),(0, 0, 1)]`
Applying R2 → `(1/sectheta)` R2, we get
`[(1, 0, 0),(0, 1, 0),(0, 0, 1)]` A−1 = `[(sectheta, -tantheta, 0),(-tantheta, sectheta, 0),(0, 0, 1)]`
∴ A−1 = `[(sectheta, -tantheta, 0),(-tantheta, sectheta, 0),(0, 0, 1)]`
APPEARS IN
संबंधित प्रश्न
Find the inverse of the following matrix by elementary row transformations if it exists. `A=[[1,2,-2],[0,-2,1],[-1,3,0]]`
If A = `[(1, 3), (3, 1)]`, Show that A2 - 2A is a scalar matrix.
Find the adjoint of the following matrix.
`[(2,-3),(3,5)]`
Find the inverse of the following matrix (if they exist):
`((1,-1),(2,3))`
Find the inverse of `[(1,2,3),(1,1,5),(2,4,7)]` by the adjoint method.
Choose the correct answer from the given alternatives in the following question:
The inverse of A = `[(0,1,0),(1,0,0),(0,0,1)]` is
Choose the correct answer from the given alternatives in the following question:
If A−1 = `- 1/2[(1,-4),(-1,2)]`, then A = ______.
Choose the correct alternative.
If A2 + mA + nI = O and n ≠ 0, |A| ≠ 0, then A–1 = _______
Choose the correct alternative.
If a 3 x 3 matrix B has it inverse equal to B, thenB2 = _______
Fill in the blank :
If A = `[(3, -5),(2, 5)]`, then co-factor of a12 is _______
Find inverse of the following matrices (if they exist) by elementary transformations :
`[(2, 0, -1),(5, 1, 0),(0, 1, 3)]`
The solution (x, y, z) of the equation `[(1, 0, 1),(-1, 1, 0),(0, -1, 1)] [(x),(y),(z)] = [(1),(1),(2)]` is (x, y, z) =
A = `[(cos theta, - sin theta),(-sin theta, -cos theta)]` then find A−1
If A = `[("a", "b"),("c", "d")]` then find the value of |A|−1
A + I = `[(3, -2),(4, 1)]` then find the value of (A + I)(A − I)
If A = `[(6, 5),(5, 6)]` and B = `[(11, 0),(0, 11)]` then find A'B'
If A = `[(0, 1),(2, 3),(1, -1)]` and B = `[(1, 2, 1),(2, 1, 0)]`, then find (AB)−1
Find the adjoint of matrix A = `[(2, 0, -1),(3, 1, 2),(-1, 1, 2)]`
State whether the following statement is True or False:
Inverse of `[(2, 0),(0, 3)]` is `[(1/2, 0),(0, 1/3)]`
Find the inverse of the following matrix:
`[(3,1),(-1,3)]`
Find the inverse of the following matrix:
`[(-3,-5,4),(-2,3,-1),(1,-4,-6)]`
adj (AB) is equal to:
The inverse matrix of `((4/5,(-5)/12),((-2)/5,1/2))` is
If A = `[(a,b),(c,d)]` such that ad - bc ≠ 0 then A-1 is
The inverse matrix of `((3,1),(5,2))` is
If A is an invertible matrix of order 2 then det (A-1) be equal
If A = `[(0, -1, 0), (1, 0, 0), (0, 0, -1)]`, then A-1 is ______
If ω is a complex cube root of unity and A = `[(ω,0,0),(0,ω^2,0),(0,0,1)]` then A-1 = ?
If a 3 × 3 matrix A has its inverse equal to A, then A2 = ______
The inverse of `[(1,cos alpha),(- cos alpha, -1)]` is ______.
If A = `[(2, 2),(4, 5)]` and A–1 = λ(adj(A)), then λ = ______ .
If A = `[(cos theta, sin theta, 0),(-sintheta, costheta, 0),(0, 0, 1)]`, where A11, A11, A13 are co-factors of a11, a12, a13 respectively, then the value of a11A11 + a12A12 + a13A13 = ______.
If matrix A = `[(1, -1),(2, 3)]` such that AX = I, then X is equal to ______.
If matrix A = `[(3, -2, 4),(1, 2, -1),(0, 1, 1)]` and A–1 = `1/k` (adj A), then k is ______.
The number of solutions of equation x2 – x3 = 1, – x1 + 2x3 = 2, x1 – 2x2 = 3 is ______.
The inverse of the matrix `[(1, 0, 0),(3, 3, 0),(5, 2, -1)]` is ______.