Advertisements
Advertisements
प्रश्न
If A = `[(0, 1),(2, 3),(1, -1)]` and B = `[(1, 2, 1),(2, 1, 0)]`, then find (AB)−1
उत्तर
AB = `[(0, 1),(2,3),(1, -1)] [(1, 2, 1),(2, 1, 0)]`
= `[(0 + 2, 0 +1, 0 + 0),(2 + 6, 4 + 3, 2 + 0),(1 - 2, 2 - 1, 1 + 0)]`
= `[(2, 1, 0),(8, 7, 2),(-1, 1, 1)]`
∴ |AB| = `2|(7, 2),(1, 1)| -1|(8, 2),(-1, 1)| + 0`
= 2(7 – 2) – (8 + 2)
= 10 – 10
= 0
∴ (AB)−1 does not exist.
APPEARS IN
संबंधित प्रश्न
Find the inverse of the following matrix by elementary row transformations if it exists.
`A = [(1, 2, -2), (0, -2, 1), (-1, 3, 0)]`
Find the matrix of the co-factor for the following matrix.
`[(1, 0, 2),(-2, 1, 3),(0, 3, -5)]`
Find the inverse of the following matrix.
`[(2, -3),(-1, 2)]`
Find the inverse of the following matrix.
`[(2,0,-1),(5,1,0),(0,1,3)]`
Find the inverse of the following matrix (if they exist):
`[(2,-3),(5,7)]`
Find the inverse of the following matrix (if they exist):
`[(2,-3,3),(2,2,3),(3,-2,2)]`
Choose the correct answer from the given alternatives in the following question:
If A = `[(1,2),(3,4)]`, and A (adj A) = kI, then the value of k is
Choose the correct alternative.
If AX = B, where A = `[(-1, 2),(2, -1)], "B" = [(1),(1)]`, then X = _______
Fill in the blank :
(AT)T = _______
Solve the following :
If A = `[(2, -3),(3, -2),(-1, 4)],"B" = [(-3, 4, 1),(2, -1, -3)]`, verify (3A – 5BT)T = 3AT – 5B.
Check whether the following matrices are invertible or not:
`[(3, 4, 3),(1, 1, 0),(1, 4, 5)]`
Find inverse of the following matrices (if they exist) by elementary transformations :
`[(2, 1),(7, 4)]`
Find the inverse of `[(3, 1, 5),(2, 7, 8),(1, 2, 5)]` by adjoint method.
If `[(x - y - z),(-y + z),(z)] = [(0),(5),(3)]`, then the value of x, y and z are respectively ______
If A = `[(3, 0, 0),(0, 3, 0),(0, 0, 3)]`, then |A| |adj A| = ______
For an invertible matrix A, if A . (adj A) = `[(10, 0),(0, 10)]`, then find the value of |A|.
A + I = `[(3, -2),(4, 1)]` then find the value of (A + I)(A − I)
If A is invertible matrix of order 3 and |A| = 5, then find |adj A|
Find A–1 using adjoint method, where A = `[(cos theta, sin theta),(-sin theta, cos theta)]`
If A = `[(0, 4, 3),(1, -3, -3),(-1, 4, 4)]`, then find A2 and hence find A−1
The value of Minor of element b22 in matrix B = `[(2, -2),(4, 5)]` is ______
Complete the following activity to verify A. adj (A) = det (A) I.
Given A = `[(2, 0, -1),(5, 1, 0),(0, 1, 3)]` then
|A| = 2(____) – 0(____) + ( ) (____)
= 6 – 0 – 5
= ______ ≠ 0
Cofactors of all elements of matrix A are
A11 = `(-1)^2 |("( )", "( )"),("( )", "( )")|` = (______),
A12 = `(-1)^3 |(5, "( )"),("( )", 3)|` = – 15,
A13 = `(-1)^4 |(5, "( )"),("( )", 1)|` = 5,
A21 = _______, A22 = _______, A23 = _______,
A31 = `(-1)^4 |("( )", "( )"),("( )", "( )")|` = (______),
A32 = `(-1)^5 |(2, "( )"),("( )", 0)|` = ( ),
A33 = `(-1)^6 |(2, "( )"),("( )", 1)|` = 2,.
Cofactors of matrix A = `[(3, "____", "____"),("____", "____",-2),(1, "____", "____")]`
adj (A) = `[("____", "____", "____"),("____", "____","____"),("____","____","____")]`
A.adj (A) = `[(2, 0, -1),(5, 1, 0),(0, 1, 3)] [("( )", -1, 1), (-15, "( )", -5),("( )", -2, "( )")] = [(1, 0, "( )"),("( )", "( )", "( )"),(0, "( )", "( )")]` = |A|I
Find the inverse of the following matrix:
`[(3,1),(-1,3)]`
Solve by matrix inversion method:
x – y + 2z = 3; 2x + z = 1; 3x + 2y + z = 4
The inverse matrix of `((4/5,(-5)/12),((-2)/5,1/2))` is
If A and B non-singular matrix then, which of the following is incorrect?
If A is an invertible matrix of order 2 then det (A-1) be equal
If A is non-singular matrix such that (A - 2l)(A - 4l) = 0 then A + 8A-1 = ______.
If ω is a complex cube root of unity and A = `[(ω,0,0),(0,ω^2,0),(0,0,1)]` then A-1 = ?
If A = `[(0, 0, 1), (0, 1, 0), (1, 0, 0)]`, then A-1 = ______
The inverse of `[(1,cos alpha),(- cos alpha, -1)]` is ______.
If A = `[(1, tanx),(-tanx, 1)]`, then AT A–1 = ______.
If A = `[(1,-1,1),(2,1,-3),(1,1,1)]`, then the sum of the elements of A-1 is ______.
If A = `[(-i, 0),(0, i)]`, then ATA is equal to
Find the inverse of the matrix A by using adjoint method.
where A = `[(-3, -1, 1),(0, 0, 1),(-15, 6, -6)]`
A–1 exists if |A| = 0.
If A = `[(3, 1),(-1, 2)]`, show that A2 – 5A + 7I = 0