मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

A = [cosθ-sinθ-sinθ-cosθ] then find A−1 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

A = `[(cos theta, - sin theta),(-sin theta, -cos theta)]` then find A−1 

बेरीज

उत्तर

|A| = `|(cos theta, - sin theta),(-sin theta, - cos theta)|`

= – cos2θ – sin2θ

= –1 ≠ 0

∴ A–1 exists.

A11 = (–1)1+1 M11 = M11 = – cos θ

A12 = (–1)1+2 M12 = – M12 = sin θ

A21 = (–1)2+1 M21 = – M21 = sin θ

A22 = (–1)2+2 M22 = M22 = cos θ

∴ adj (A) = `[(- cos theta, sin theta),(sin theta, cos theta)]^"T"`

= `[(- cos theta, sin theta),(sin theta, cos theta)]`

A−1 = `1/|"A"|` adj (A)

= `[(cos theta, -sin theta),(-sin theta, -cos theta)]`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1.2: Matrics - Very Short Answer

संबंधित प्रश्‍न

Find the matrix of the co-factor for the following matrix.

`[(1,3),(4,-1)]`


Find the adjoint of the following matrix.

`[(1, -1, 2),(-2, 3, 5),(-2, 0, -1)]`


Find the inverse of the following matrix.

`[(0,1,2),(1,2,3),(3,1,1)]`


Find the inverses of the following matrices by the adjoint method:

`[(1,2,3),(0,2,4),(0,0,5)]`


Find the inverse of  A = `[(1, 0, 1),(0, 2, 3),(1, 2, 1)]` by elementary column transformations.


Fill in the blank :

If A = [aij]mxm is a non-singular matrix, then A–1 = `(1)/(......)` adj(A).


Fill in the blank :

If a1x + b1y = c1 and a2x + b2y = c2, then matrix form is `[(......, ......),(......, ......)] = [(x),(y)] = [(......),(......)]`


The solution (x, y, z) of the equation `[(1, 0, 1),(-1, 1, 0),(0, -1, 1)] [(x),(y),(z)] = [(1),(1),(2)]` is (x, y, z) =


If ω is a complex cube root of unity, then the matrix A = `[(1, ω^2, ω),(ω^2, ω, 1),(ω, 1, ω^2)]` is


`cos theta [(cos theta, sin theta),(-sin theta, cos  theta)] + sin theta [(sin theta, - cos theta),(cos theta, sin theta)]` = ______


If A = `[(cos alpha, sin alpha),(-sin alpha, cos alpha)]`, then A10 = ______


If A = `[(4, 5),(2, 5)]`, then |(2A)−1| = ______


If `[(x - y - z),(-y + z),(z)] = [(0),(5),(3)]`, then the value of x, y and z are respectively ______


If A = `[("a", "b"),("c", "d")]` then find the value of |A|−1 


If A = `[(-1),(2),(3)]`, B = `[(3, 1, -2)]`, find B'A'


If A is invertible matrix of order 3 and |A| = 5, then find |adj A|


Find the adjoint of matrix A = `[(6, 5),(3, 4)]`


If A = `[(1, 0, 0),(3, 3, 0),(5, 2, -1)]`, find A−1 by the adjoint method


State whether the following statement is True or False:

Inverse of `[(2, 0),(0, 3)]` is `[(1/2, 0),(0, 1/3)]`


Find the inverse of matrix B = `[(3,1, 5),(2, 7, 8),(1, 2, 5)]` by using adjoint method


Find the inverse of the following matrix:

`[(-3,-5,4),(-2,3,-1),(1,-4,-6)]`


If A-1 = `[(1,0,3),(2,1,-1),(1,-1,1)]`  then, find A.


A sales person Ravi has the following record of sales for the month of January, February and March 2009 for three products A, B and C. He has been paid a commission at fixed rate per unit but at varying rates for products A, B and C.

Months Sales in units Commission
A B C
January 9 10 2 800
February 15 5 4 900
March 6 10 3 850

Find the rate of commission payable on A, B and C per unit sold using matrix inversion method.


If A = `[(1,-1),(2,3)]` show that A2 - 4A + 5I2 = 0 and also find A-1.


If A = `[(4,5),(2,1)]` and A2 - 5A - 6l = 0, then A-1 = ?


If A = `[(p/4, 0, 0), (0, q/5, 0), (0, 0, r/6)]` and `"A"^-1 = [(1/4, 0, 0), (0, 1/5, 0), (0, 0, 1/6)]`, then p + q + r = ______ 


If A = `[(3, -3, 4), (2, -3, 4), (0, -1, 1)]` then A-1 = ______


If A = `[(1 + 2"i", "i"),(- "i", 1 - 2"i")]`, where i = `sqrt-1`, then A(adj A) = ______.


If ω is a complex cube root of unity and A = `[(ω,0,0),(0,ω^2,0),(0,0,1)]` then A-1 = ?


If A = `[(0, 0, 1), (0, 1, 0), (1, 0, 0)]`, then A-1 = ______ 


If `A = [[-3,1],[-4,3]]` and A-1 = αA, then α = ______.


The matrix `[(lambda, 1, 0),(0, 3, 5),(0, -3, lambda)]` is invertible ______.


If matrix A = `[(1, -1),(2, 3)]` such that AX = I, then X is equal to ______.


If A = `[(-i, 0),(0, i)]`, then ATA is equal to


A–1 exists if |A| = 0.


If matrix A = `[(3, -2, 4),(1, 2, -1),(0, 1, 1)]` and A–1 = `1/k` (adj A), then k is ______.


The number of solutions of equation x2 – x3 = 1, – x1 + 2x3 = 2, x1 – 2x2 = 3 is ______.


If A = `[(x, 1),(1, 0)]` and A = A–1, then x = ______.


If A = `[(2, 2),(-3, 2)]`, B = `[(0, -1),(1, 0)]`, then (B–1 A–1)–1 is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×