Advertisements
Advertisements
प्रश्न
If A = `[(1,-1),(2,3)]` show that A2 - 4A + 5I2 = 0 and also find A-1.
उत्तर
Given A = `[(1,-1),(2,3)] |"A"| = |(1,-1),(2,3)|` = 3 + 2 = 5 ≠ 0
∴ A-1 exists.
LHS = A2 - 4A + 5I
Premultiply by A-1 we get
LHS = `"A"^-1. "A"^2 - 4"A"^-1."A" + 5"A"^-1."I"`
`= ("A"^-1 "A")."A" - 4"I" + 5"A"^-1` ...[∵ A-1A = I]
= IA - 4I + 5A-1
= A - 4I + 5A-1
Now `"A"^-1 = 1/|"A"| "adj A"`
`= 1/5 [(3,1),(-2,1)]`
∴ LHS = `[(1,-1),(2,3)] - 4[(+1,0),(0,1)] + 5 . 1/5 [(3,1),(-2,1)]`
`= [(1,-1),(2,3)] + [(-4,0),(0,-4)] + [(3,1),(-2,1)]`
`= [(1-4+3,-1+0+1),(2+0-2,3-4+1)] = [(0,0),(0,0)]`
= RHS
APPEARS IN
संबंधित प्रश्न
If A = `[(1,-1,2),(3,0,-2),(1,0,3)]` verify that A (adj A) = (adj A) A = | A | I
Choose the correct answer from the given alternatives in the following question:
The inverse of a symmetric matrix is
Fill in the blank :
If A = `[(2, 1),(1, 1)] "and" "A"^-1 = [(1, 1),(x, 2)]`, then x = _______
If A = `[(0, 3, 3),(-3, 0, -4),(-3, 4, 0)]` and B = `[(x),(y),(z)]`, find the matrix B'(AB)
The value of Minor of element b22 in matrix B = `[(2, -2),(4, 5)]` is ______
If A = `|(1,1,1),(3,4,7),(1,-1,1)|` verify that A(adj A) = (adj A)(A) = |A|I3.
If A = `[(3, -3, 4), (2, -3, 4), (0, -1, 1)]` then A-1 = ______
If A = `[(2, 3),(a, 6)]` is a singular matrix, then a = ______.
If matrix P = `[(0, -tan (θ//2)),(tanθ//2, 0)]`, then find (I – P) `[(cosθ, -sinθ),(sinθ, cosθ)]`
If matrix A = `[(1, -1),(2, 3)]`, then A2 – 4A + 5I is where I is a unit matix.