Advertisements
Advertisements
प्रश्न
If A = `|(1,1,1),(3,4,7),(1,-1,1)|` verify that A(adj A) = (adj A)(A) = |A|I3.
उत्तर
Given A = `|(1,1,1),(3,4,7),(1,-1,1)|`
|A| = `1|(4,7),(-1,1)| -1|(3,7),(1,1)| +1|(3,4),(1,-1)|`
= (4 + 7) - 1(3 - 7) + 1(-3 - 4)
= 11 + 4 - 7 = 8
adj A = `[(+ |(4,7),(-1,1)|,-|(3,7),(1,1)|,+|(3,4),(1,-1)|),(-|(1,1),(-1,1)|,+|(1,1),(1,1)|,-|(1,1),(1,-1)|),(+|(1,1),(4,7)|,-|(1,1),(3,7)|,+|(1,1),(3,4)|)]^"T"`
`= [((4+7),-(3-7),+(-3-4)),(-(1+1),+(1-1),-(-1-1)),(+(7-4), -(7-3), +(4-3))]^"T"`
`= [(11,4,-7),(-2,0,2),(3,-4,1)]^"T"`
`= [(11,-2,3),(4,0,-4),(-7,2,1)]`
Now
A(adj A) = `[(1,1,1),(3,4,7),(1,-1,1)][(11,-2,3),(4,0,-4),(-7,2,1)]`
`= [(11+4-7,-2+0+2,3-4+1),(33+16-49,-6+0+14,9-16+7),(11-4-7,-2+0+2,3+4+1)]`
`= [(8,0,0),(0,8,0),(0,0,8)]` ....(1)
(adj A)A = `[(11,-2,3),(4,0,-4),(-7,2,1)] [(1,1,1),(3,4,7),(1,-1,1)]`
`= [(11-6+3,11-8-3,11-14+3),(4+0-4,4+0+4,4+0-4),(-7+6+1,-7+8-1,-7+14+1)]`
`= [(8,0,0),(0,8,0),(0,0,8)]` ....(2)
|A|.I3 = `8[(1,0,0),(0,1,0),(0,0,1)] = [(8,0,0),(0,8,0),(0,0,8)]` .....(3)
From (1), (2) and (3)
A(adj A) = (adj A)(A) = |A| I3.
APPEARS IN
संबंधित प्रश्न
Find the inverse of the following matrix (if they exist):
`[(2,0,-1),(5,1,0),(0,1,3)]`
Find the inverse of `[(1,2,3),(1,1,5),(2,4,7)]` by the adjoint method.
Choose the correct answer from the given alternatives in the following question:
If A = `[(lambda,1),(-1, -lambda)]`, and A-1 does not exist if λ = _______
Choose the correct alternative.
If a 3 x 3 matrix B has it inverse equal to B, thenB2 = _______
Check whether the following matrices are invertible or not:
`[(1, 1),(1, 1)]`
Find the inverse of the following matrix:
`[(1,2,3),(0,2,4),(0,0,5)]`
The sum of three numbers is 20. If we multiply the first by 2 and add the second number and subtract the third we get 23. If we multiply the first by 3 and add second and third to it, we get 46. By using the matrix inversion method find the numbers.
If A = `((-1,2),(1,-4))` then A(adj A) is
Choose the correct option:
If X, Y, Z are non zero real numbers, then the inverse of matrix A = `[(x, 0, 0),(0, y, 0),(0, 0, z)]`
If A = `[(1, 2, 4),(4, 3, -2),(1, 0, -3)]`. Show that A–1 exists and find A–1 using column transformation.