Advertisements
Advertisements
प्रश्न
If A = `|(1,1,1),(3,4,7),(1,-1,1)|` verify that A(adj A) = (adj A)(A) = |A|I3.
उत्तर
Given A = `|(1,1,1),(3,4,7),(1,-1,1)|`
|A| = `1|(4,7),(-1,1)| -1|(3,7),(1,1)| +1|(3,4),(1,-1)|`
= (4 + 7) - 1(3 - 7) + 1(-3 - 4)
= 11 + 4 - 7 = 8
adj A = `[(+ |(4,7),(-1,1)|,-|(3,7),(1,1)|,+|(3,4),(1,-1)|),(-|(1,1),(-1,1)|,+|(1,1),(1,1)|,-|(1,1),(1,-1)|),(+|(1,1),(4,7)|,-|(1,1),(3,7)|,+|(1,1),(3,4)|)]^"T"`
`= [((4+7),-(3-7),+(-3-4)),(-(1+1),+(1-1),-(-1-1)),(+(7-4), -(7-3), +(4-3))]^"T"`
`= [(11,4,-7),(-2,0,2),(3,-4,1)]^"T"`
`= [(11,-2,3),(4,0,-4),(-7,2,1)]`
Now
A(adj A) = `[(1,1,1),(3,4,7),(1,-1,1)][(11,-2,3),(4,0,-4),(-7,2,1)]`
`= [(11+4-7,-2+0+2,3-4+1),(33+16-49,-6+0+14,9-16+7),(11-4-7,-2+0+2,3+4+1)]`
`= [(8,0,0),(0,8,0),(0,0,8)]` ....(1)
(adj A)A = `[(11,-2,3),(4,0,-4),(-7,2,1)] [(1,1,1),(3,4,7),(1,-1,1)]`
`= [(11-6+3,11-8-3,11-14+3),(4+0-4,4+0+4,4+0-4),(-7+6+1,-7+8-1,-7+14+1)]`
`= [(8,0,0),(0,8,0),(0,0,8)]` ....(2)
|A|.I3 = `8[(1,0,0),(0,1,0),(0,0,1)] = [(8,0,0),(0,8,0),(0,0,8)]` .....(3)
From (1), (2) and (3)
A(adj A) = (adj A)(A) = |A| I3.
APPEARS IN
संबंधित प्रश्न
Choose the correct alternative.
If A is a 2 x 2 matrix such that A(adj. A) = `[(5, 0),(0, 5)]`, then |A| = _______
Find inverse of the following matrices (if they exist) by elementary transformations :
`[(2, -3, 3),(2, 2, 3),(3, -2, 2)]`
A = `[(cos theta, - sin theta),(-sin theta, -cos theta)]` then find A−1
A + I = `[(3, -2),(4, 1)]` then find the value of (A + I)(A − I)
If A = `[(0, 3, 3),(-3, 0, -4),(-3, 4, 0)]` and B = `[(x),(y),(z)]`, find the matrix B'(AB)
Find A–1 using adjoint method, where A = `[(cos theta, sin theta),(-sin theta, cos theta)]`
If A = `[(a,b),(c,d)]` such that ad - bc ≠ 0 then A-1 is
Find the inverse of the matrix A by using adjoint method.
where A = `[(-3, -1, 1),(0, 0, 1),(-15, 6, -6)]`
For a invertible matrix A if A(adjA) = `[(10, 0),(0, 10)]`, then |A| = ______.
If A = `[(3, 1),(-1, 2)]`, show that A2 – 5A + 7I = 0