Advertisements
Advertisements
प्रश्न
If A = `[(0, 3, 3),(-3, 0, -4),(-3, 4, 0)]` and B = `[(x),(y),(z)]`, find the matrix B'(AB)
उत्तर
AB = `[(0, 3, 3),(-3, 0, -4),(-3, 4, 0)] [(x),(z),(y)]`
= `[(3y + 3z),(-3x + 4z),(-3x + 4y)]`
B'(AB) = `[(x),(y),(z)] [(3y + 3z),(-3x - 4z),(-3x + 4y)]`
= `[(x, y, z)] [(3y + 3z),(-3x - 4z),(-3x + 4y)]`
= [3xy + 3xz − 3xy − 4yz − 3xz + 4yz]
= [0]
APPEARS IN
संबंधित प्रश्न
Find the inverse of the following matrix by the adjoint method.
`[(2,-2),(4,3)]`
Find the inverse of the following matrix (if they exist):
`((1,-1),(2,3))`
Choose the correct alternative.
If A is a 2 x 2 matrix such that A(adj. A) = `[(5, 0),(0, 5)]`, then |A| = _______
If A = `[(1, 2),(-3, -1)], "B" = [(-1, 0),(1, 5)]`, then AB =
Fill in the blank :
If A = [aij]2x3 and B = [bij]mx1 and AB is defined, then m = _______
Fill in the blank :
(AT)T = _______
Find inverse of the following matrices (if they exist) by elementary transformations :
`[(2, 1),(7, 4)]`
Find inverse of the following matrices (if they exist) by elementary transformations :
`[(2, -3, 3),(2, 2, 3),(3, -2, 2)]`
The solution (x, y, z) of the equation `[(1, 0, 1),(-1, 1, 0),(0, -1, 1)] [(x),(y),(z)] = [(1),(1),(2)]` is (x, y, z) =
If ω is a complex cube root of unity, then the matrix A = `[(1, ω^2, ω),(ω^2, ω, 1),(ω, 1, ω^2)]` is
If A = `[(0, 0, -1),(0, -1, 0),(-1, 0, 0)]`, then the only correct statement about the matrix A is ______
A = `[(cos theta, - sin theta),(-sin theta, -cos theta)]` then find A−1
If A = `[(-1),(2),(3)]`, B = `[(3, 1, -2)]`, find B'A'
If A = `[(6, 5),(5, 6)]` and B = `[(11, 0),(0, 11)]` then find A'B'
Find the adjoint of matrix A = `[(6, 5),(3, 4)]`
If A = `[(1, 0, 0),(3, 3, 0),(5, 2, -1)]`, find A−1 by the adjoint method
The value of Minor of element b22 in matrix B = `[(2, -2),(4, 5)]` is ______
Complete the following activity to verify A. adj (A) = det (A) I.
Given A = `[(2, 0, -1),(5, 1, 0),(0, 1, 3)]` then
|A| = 2(____) – 0(____) + ( ) (____)
= 6 – 0 – 5
= ______ ≠ 0
Cofactors of all elements of matrix A are
A11 = `(-1)^2 |("( )", "( )"),("( )", "( )")|` = (______),
A12 = `(-1)^3 |(5, "( )"),("( )", 3)|` = – 15,
A13 = `(-1)^4 |(5, "( )"),("( )", 1)|` = 5,
A21 = _______, A22 = _______, A23 = _______,
A31 = `(-1)^4 |("( )", "( )"),("( )", "( )")|` = (______),
A32 = `(-1)^5 |(2, "( )"),("( )", 0)|` = ( ),
A33 = `(-1)^6 |(2, "( )"),("( )", 1)|` = 2,.
Cofactors of matrix A = `[(3, "____", "____"),("____", "____",-2),(1, "____", "____")]`
adj (A) = `[("____", "____", "____"),("____", "____","____"),("____","____","____")]`
A.adj (A) = `[(2, 0, -1),(5, 1, 0),(0, 1, 3)] [("( )", -1, 1), (-15, "( )", -5),("( )", -2, "( )")] = [(1, 0, "( )"),("( )", "( )", "( )"),(0, "( )", "( )")]` = |A|I
Find the adjoint of the matrix A = `[(2,3),(1,4)]`
If A = `[(1,3,3),(1,4,3),(1,3,4)]` then verify that A(adj A) = |A| I and also find A-1.
Find the inverse of the following matrix:
`[(1,-1),(2,3)]`
Find the inverse of the following matrix:
`[(1,2,3),(0,2,4),(0,0,5)]`
If A = `[(2,3),(1,-6)]` and B = `[(-1,4),(1,-2)]`, then verify adj (AB) = (adj B)(adj A)
The prices of three commodities A, B, and C are ₹ x, y, and z per unit respectively. P purchases 4 units of C and sells 3 units of A and 5 units of B. Q purchases 3 units of B and sells 2 units of A and 1 unit of C. R purchases 1 unit of A and sells 4 units of B and 6 units of C. In the process P, Q and R earn ₹ 6,000, ₹ 5,000 and ₹ 13,000 respectively. By using the matrix inversion method, find the prices per unit of A, B, and C.
The matrix A = `[("a",-1,4),(-3,0,1),(-1,1,2)]` is not invertible only if a = _______.
If A = `[(4,5),(2,1)]` and A2 - 5A - 6l = 0, then A-1 = ?
If A = `[(2, 0, -1), (5, 1, 0), (0, 1, 3)]` and A−1 = `[(3, -1, 1), (α, 6, -5), (β, -2, 2)]`, then the values of α and β are, respectively.
If A is non-singular matrix such that (A - 2l)(A - 4l) = 0 then A + 8A-1 = ______.
If A is non-singular matrix and (A + l)(A - l) = 0 then A + A-1 = ______.
If A = `[(1,-1,1),(2,1,-3),(1,1,1)]`, then the sum of the elements of A-1 is ______.
If A = `[(2, 3),(a, 6)]` is a singular matrix, then a = ______.
Find the inverse of the matrix A by using adjoint method.
where A = `[(-3, -1, 1),(0, 0, 1),(-15, 6, -6)]`
If A = `[(2, 2),(-3, 2)]`, B = `[(0, -1),(1, 0)]`, then (B–1 A–1)–1 is equal to ______.
If A = `[(cos α, sin α),(-sin α, cos α)]`, then find α satisfying `0 < α < π/2`, when A + AT = `sqrt(2) l_2` where AT is transpose of A.
If A = `[(cos α, sin α),(- sin α, cos α)]`, then the matrix A is ______.
For an invertible matrix A, if A (adj A) = `|(20, 0),(0, 20)|`, then | A | = ______.
if `A = [(2,-1,1),(-1,2,-1),(1,-1,2)]` then find A−1 by the adjoint method.
If A = `[(3, 1),(-1, 2)]`, show that A2 – 5A + 7I = 0