Advertisements
Advertisements
प्रश्न
If A = `[(6, 5),(5, 6)]` and B = `[(11, 0),(0, 11)]` then find A'B'
उत्तर
A'B' = `[(6, 5),(5, 6)]^' [(11, 0),(0, 11)]^'`
= `[(6, 5),(5, 6)] [(11, 0),(0, 11)]`
= `[(66 + 0, 0 + 55),(55 + 0, 0 + 66)]`
= `[(66, 55),(55, 66)]`
APPEARS IN
संबंधित प्रश्न
Find the inverse of the matrix `[(1 2 3),(1 1 5),(2 4 7)]` by adjoint method
Find the co-factor of the element of the following matrix.
`[(1,-1,2),(-2,3,5),(-2,0,-1)]`
Find the inverse of the following matrix by the adjoint method.
`[(1, 0, 0),(3, 3, 0),(5, 2, -1)]`
Find the inverse of the following matrix (if they exist):
`((1,-1),(2,3))`
Find the inverse of the following matrix (if they exist):
`[(2,-3),(5,7)]`
Choose the correct answer from the given alternatives in the following question:
The inverse of a symmetric matrix is
Choose the correct answer from the given alternatives in the following question:
For a 2 × 2 matrix A, if A(adj A) = `[(10,0),(0,10)]`, then determinant A equals
Choose the correct answer from the given alternatives in the following question:
If A−1 = `- 1/2[(1,-4),(-1,2)]`, then A = ______.
Find the inverse of the following matrices by the adjoint method `[(1, 2, 3),(0, 2, 4),(0, 0, 5)]`.
Find the inverse of the following matrices by transformation method: `[(1, 2),(2, -1)]`
Find the inverse of A = `[(1, 0, 1),(0, 2, 3),(1, 2, 1)]` by elementary column transformations.
Adjoint of `[(2, -3),(4, -6)]` is _______
Fill in the blank :
(AT)T = _______
State whether the following is True or False :
A(adj. A) = |A| I, where I is the unit matrix.
Check whether the following matrices are invertible or not:
`[(3, 4, 3),(1, 1, 0),(1, 4, 5)]`
Find inverse of the following matrices (if they exist) by elementary transformations :
`[(1, -1),(2, 3)]`
Find inverse of the following matrices (if they exist) by elementary transformations :
`[(2, -3, 3),(2, 2, 3),(3, -2, 2)]`
For an invertible matrix A, if A . (adj A) = `[(10, 0),(0, 10)]`, then find the value of |A|.
If the inverse of the matrix `[(alpha, 14, -1),(2, 3, 1),(6, 2, 3)]` does not exists then find the value of α
If A = `[(0, 1),(2, 3),(1, -1)]` and B = `[(1, 2, 1),(2, 1, 0)]`, then find (AB)−1
Find the adjoint of the matrix A = `[(2,3),(1,4)]`
If A = `[(1,3,3),(1,4,3),(1,3,4)]` then verify that A(adj A) = |A| I and also find A-1.
If A = `[(2,-2,2),(2,3,0),(9,1,5)]` then, show that (adj A) A = O.
Weekly expenditure in an office for three weeks is given as follows. Assuming that the salary in all the three weeks of different categories of staff did not vary, calculate the salary for each type of staff, using the matrix inversion method.
Week | Number of employees | Total weekly salary (in ₹) |
||
A | B | C | ||
1st week | 4 | 2 | 3 | 4900 |
2nd week | 3 | 3 | 2 | 4500 |
3rd week | 4 | 3 | 4 | 5800 |
adj (AB) is equal to:
The matrix M = `[(0,1,2),(1,2,3),(3,1,1)]` and its inverse is N = [nij]. What is the element n23 of matrix N?
If A = `[(2, 0, -1), (5, 1, 0), (0, 1, 3)]` and A−1 = `[(3, -1, 1), (α, 6, -5), (β, -2, 2)]`, then the values of α and β are, respectively.
If A is non-singular matrix and (A + l)(A - l) = 0 then A + A-1 = ______.
If A = `[(1 + 2"i", "i"),(- "i", 1 - 2"i")]`, where i = `sqrt-1`, then A(adj A) = ______.
If a 3 × 3 matrix A has its inverse equal to A, then A2 = ______
If A = `[(1, tanx),(-tanx, 1)]`, then AT A–1 = ______.
If AB = I and B = AT, then _______.
If A = `[(2, -3, 3),(2, 2, 3),(3, "p", 2)]` and A–1 = `[(-2/5, 0, 3/5),(-1/5, 1/5, "q"),(2/5, 1/5, -2/5)]`, then ______.
If A = `[(2, 3),(a, 6)]` is a singular matrix, then a = ______.
Matrix A = `[(1, 2, 3),(1, 1, 5),(2, 4, 7)]` then the value of a31 A31 + a32 A32 + a33 A33 is ______.
If matrix A = `[(1, 2),(4, 3)]`, such that AX = I, then X is equal to ______.
For an invertible matrix A, if A (adj A) = `|(20, 0),(0, 20)|`, then | A | = ______.
If A = `[(1, 2),(3, 4)]` verify that A (adj A) = (adj A) A = |A| I
If A = `[(3, 1),(-1, 2)]`, show that A2 – 5A + 7I = 0