Advertisements
Advertisements
प्रश्न
Find inverse of the following matrices (if they exist) by elementary transformations :
`[(1, -1),(2, 3)]`
उत्तर
Let A = `[(1, -1),(2, 3)]`
∴ |A| = `|(1, -1),(2, 3)|`
= 3 + 2
= 5 ≠ 0
∴ A–1 exists.
Consider AA–1 = I
∴ `[(1, -1),(2, 3)] "A"^-1 = [(1, 0),(0, 1)]`
Applying R2 → R2 – 2R1, we get
`[(1, -1),(0, 5)] "A"^-1 = [(1, 0),(-2, 1)]`
Applying R2 → `(1/5)` R2, we get
`[(1, -1),(0, 1)] "A"^-1 = [(1, 0),(-2/5, 1/5)]`
Applying R1 → R1 – R2, we get
`[(1, 0),(0, 1)] "A"^-1 = [(3/5, 1/5),(-2/5, 1/5)]`
∴ A–1 = `[(3/5, 1/5),(-2/5, 1/5)]`.
APPEARS IN
संबंधित प्रश्न
Find the inverse of the following matrix by elementary row transformations if it exists.
`A = [(1, 2, -2), (0, -2, 1), (-1, 3, 0)]`
If A = `[(1, 3), (3, 1)]`, Show that A2 - 2A is a scalar matrix.
Solve the following equations by the inversion method :
2x + 3y = - 5 and 3x + y = 3.
Find the inverse of the following matrix.
`[(2, -3),(-1, 2)]`
Find the inverse of the following matrix.
`[(0,1,2),(1,2,3),(3,1,1)]`
Find the inverse of the following matrix (if they exist):
`((2,1),(1,-1))`
Choose the correct answer from the given alternatives in the following question:
If A = `[("cos"alpha, - "sin"alpha,0),("sin"alpha,"cos"alpha,0),(0,0,1)]` where α ∈ R, then [F(α)]-1 is
Find the inverse of the following matrices by transformation method:
`[(2, 0, −1),(5, 1, 0),(0, 1, 3)]`
Fill in the blank :
If a1x + b1y = c1 and a2x + b2y = c2, then matrix form is `[(......, ......),(......, ......)] = [(x),(y)] = [(......),(......)]`
State whether the following is True or False :
If A and B are conformable for the product AB, then (AB)T = ATBT.
State whether the following is True or False :
A = `[(2, 1),(10, 5)]` is invertible matrix.
Solve the following :
If A = `[(2, -3),(3, -2),(-1, 4)],"B" = [(-3, 4, 1),(2, -1, -3)]`, verify (3A – 5BT)T = 3AT – 5B.
Find the inverse of `[(3, 1, 5),(2, 7, 8),(1, 2, 5)]` by adjoint method.
The adjoint matrix of `[(3, -3, 4),(2, -3, 4),(0, -1, 1)]` is ______.
If A = `[(2, 2),(-3, 2)]` and B = `[(0, -1),(1, 0)]`, then find the matrix (B−1 A−1)−1.
If A = `[("a", "b"),("c", "d")]` then find the value of |A|−1
If A = `[(1, 2),(3, -2),(-1, 0)]` and B = `[(1, 3, 2),(4, -1, 3)]` then find the order of AB
If A = `[(0, 3, 3),(-3, 0, -4),(-3, 4, 0)]` and B = `[(x),(y),(z)]`, find the matrix B'(AB)
If A is invertible matrix of order 3 and |A| = 5, then find |adj A|
If A = `[(0, 4, 3),(1, -3, -3),(-1, 4, 4)]`, then find A2 and hence find A−1
State whether the following statement is True or False:
Inverse of `[(2, 0),(0, 3)]` is `[(1/2, 0),(0, 1/3)]`
If A = [aij]2×2, where aij = i – j, then A = ______
A sales person Ravi has the following record of sales for the month of January, February and March 2009 for three products A, B and C. He has been paid a commission at fixed rate per unit but at varying rates for products A, B and C.
Months | Sales in units | Commission | ||
A | B | C | ||
January | 9 | 10 | 2 | 800 |
February | 15 | 5 | 4 | 900 |
March | 6 | 10 | 3 | 850 |
Find the rate of commission payable on A, B and C per unit sold using matrix inversion method.
If A = `((-1,2),(1,-4))` then A(adj A) is
If A is 3 × 3 matrix and |A| = 4 then |A-1| is equal to:
The cost of 2 Kg of Wheat and 1 Kg of Sugar is ₹ 70. The cost of 1 Kg of Wheat and 1 Kg of Rice is ₹ 70. The cost of 3 Kg of Wheat, 2 Kg of Sugar and 1 Kg of rice is ₹ 170. Find the cost of per kg each item using the matrix inversion method.
If A = `[(1,2),(3,-5)]`, then A-1 = ?
If A = `[(p/4, 0, 0), (0, q/5, 0), (0, 0, r/6)]` and `"A"^-1 = [(1/4, 0, 0), (0, 1/5, 0), (0, 0, 1/6)]`, then p + q + r = ______
If A = `[(3, -3, 4), (2, -3, 4), (0, -1, 1)]` then A-1 = ______
If A = `[(1 + 2"i", "i"),(- "i", 1 - 2"i")]`, where i = `sqrt-1`, then A(adj A) = ______.
If A = `[(5, -4), (7, -5)]`, then 3A-1 = ______
If A = `[(1,-1,1),(2,1,-3),(1,1,1)]`, then the sum of the elements of A-1 is ______.
If A = `[(2, -3, 3),(2, 2, 3),(3, "p", 2)]` and A–1 = `[(-2/5, 0, 3/5),(-1/5, 1/5, "q"),(2/5, 1/5, -2/5)]`, then ______.
If A, B are two square matries, such that AB = B, BA = A and n ∈ N then (A + B)n =
Matrix A = `[(1, 2, 3),(1, 1, 5),(2, 4, 7)]` then the value of a31 A31 + a32 A32 + a33 A33 is ______.
For a invertible matrix A if A(adjA) = `[(10, 0),(0, 10)]`, then |A| = ______.
If A = `[(cos α, sin α),(-sin α, cos α)]`, then find α satisfying `0 < α < π/2`, when A + AT = `sqrt(2) l_2` where AT is transpose of A.
If matrix A = `[(1, -1),(2, 3)]`, then A2 – 4A + 5I is where I is a unit matix.
if `A = [(2,-1,1),(-1,2,-1),(1,-1,2)]` then find A−1 by the adjoint method.
If A = `[(2, 3),(4, 5)]`, show that A2 – 7A – 2I = 0