हिंदी

Find inverse of the following matrices (if they exist) by elementary transformations : [1-123] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find inverse of the following matrices (if they exist) by elementary transformations :

`[(1, -1),(2, 3)]`

योग

उत्तर

Let A = `[(1, -1),(2, 3)]`

∴ |A| = `|(1, -1),(2, 3)|`

= 3 + 2
= 5 ≠ 0
∴ A–1 exists.
Consider AA–1  = I

∴ `[(1, -1),(2, 3)] "A"^-1 = [(1, 0),(0, 1)]`

Applying R2 → R2 – 2R1, we get

`[(1, -1),(0, 5)] "A"^-1 = [(1, 0),(-2, 1)]`

Applying R2 → `(1/5)` R2, we get

`[(1, -1),(0, 1)] "A"^-1 = [(1, 0),(-2/5, 1/5)]`

Applying R1 → R1 – R2, we get

`[(1, 0),(0, 1)] "A"^-1 = [(3/5, 1/5),(-2/5, 1/5)]`

∴ A–1 = `[(3/5, 1/5),(-2/5, 1/5)]`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Matrices - Miscellaneous Exercise 2 [पृष्ठ ८५]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 2 Matrices
Miscellaneous Exercise 2 | Q 4.16 | पृष्ठ ८५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the inverse of the following matrix by elementary row transformations if it exists.
`A = [(1, 2, -2), (0, -2, 1), (-1, 3, 0)]`


If A = `[(1, 3), (3, 1)]`, Show that A2 - 2A is a scalar matrix.


Solve the following equations by the inversion method :
2x + 3y = - 5 and 3x + y = 3.


Find the inverse of the following matrix.

`[(2, -3),(-1, 2)]`


Find the inverse of the following matrix.

`[(0,1,2),(1,2,3),(3,1,1)]`


Find the inverse of the following matrix (if they exist):

`((2,1),(1,-1))`


Choose the correct answer from the given alternatives in the following question:

If A = `[("cos"alpha, - "sin"alpha,0),("sin"alpha,"cos"alpha,0),(0,0,1)]` where α ∈ R, then [F(α)]-1 is


Find the inverse of the following matrices by transformation method:

`[(2, 0, −1),(5, 1, 0),(0, 1, 3)]`


Fill in the blank :

If a1x + b1y = c1 and a2x + b2y = c2, then matrix form is `[(......, ......),(......, ......)] = [(x),(y)] = [(......),(......)]`


State whether the following is True or False :

If A and B are conformable for the product AB, then (AB)T = ATBT.


State whether the following is True or False :

A = `[(2, 1),(10, 5)]` is invertible matrix.


Solve the following :

If A = `[(2, -3),(3, -2),(-1, 4)],"B" = [(-3, 4, 1),(2, -1, -3)]`, verify (3A – 5BT)T = 3AT – 5B.


Find the inverse of `[(3, 1, 5),(2, 7, 8),(1, 2, 5)]` by adjoint method.


The adjoint matrix of `[(3, -3, 4),(2, -3, 4),(0, -1, 1)]` is ______.


If A = `[(2, 2),(-3, 2)]` and B = `[(0, -1),(1, 0)]`, then find the matrix (B−1 A−1)−1.


If A = `[("a", "b"),("c", "d")]` then find the value of |A|−1 


If A = `[(1, 2),(3, -2),(-1, 0)]` and B = `[(1, 3, 2),(4, -1, 3)]` then find the order of AB


If A = `[(0, 3, 3),(-3, 0, -4),(-3, 4, 0)]` and B = `[(x),(y),(z)]`, find the matrix B'(AB)


If A is invertible matrix of order 3 and |A| = 5, then find |adj A|


If A = `[(0, 4, 3),(1, -3, -3),(-1, 4, 4)]`, then find A2 and hence find A−1 


State whether the following statement is True or False:

Inverse of `[(2, 0),(0, 3)]` is `[(1/2, 0),(0, 1/3)]`


If A = [aij]2×2, where aij = i – j, then A = ______


A sales person Ravi has the following record of sales for the month of January, February and March 2009 for three products A, B and C. He has been paid a commission at fixed rate per unit but at varying rates for products A, B and C.

Months Sales in units Commission
A B C
January 9 10 2 800
February 15 5 4 900
March 6 10 3 850

Find the rate of commission payable on A, B and C per unit sold using matrix inversion method.


If A = `((-1,2),(1,-4))` then A(adj A) is


If A is 3 × 3 matrix and |A| = 4 then |A-1| is equal to:


The cost of 2 Kg of Wheat and 1 Kg of Sugar is ₹ 70. The cost of 1 Kg of Wheat and 1 Kg of Rice is ₹ 70. The cost of 3 Kg of Wheat, 2 Kg of Sugar and 1 Kg of rice is ₹ 170. Find the cost of per kg each item using the matrix inversion method.


If A = `[(1,2),(3,-5)]`, then A-1 = ?


If A = `[(p/4, 0, 0), (0, q/5, 0), (0, 0, r/6)]` and `"A"^-1 = [(1/4, 0, 0), (0, 1/5, 0), (0, 0, 1/6)]`, then p + q + r = ______ 


If A = `[(3, -3, 4), (2, -3, 4), (0, -1, 1)]` then A-1 = ______


If A = `[(1 + 2"i", "i"),(- "i", 1 - 2"i")]`, where i = `sqrt-1`, then A(adj A) = ______.


If A = `[(5, -4), (7, -5)]`, then 3A-1 =  ______ 


If A = `[(1,-1,1),(2,1,-3),(1,1,1)]`, then the sum of the elements of A-1 is ______.


If A = `[(2,  -3, 3),(2, 2, 3),(3, "p", 2)]` and A–1 = `[(-2/5, 0, 3/5),(-1/5, 1/5, "q"),(2/5, 1/5, -2/5)]`, then ______.


If A, B are two square matries, such that AB = B, BA = A and n ∈ N then (A + B)n =


Matrix A = `[(1, 2, 3),(1, 1, 5),(2, 4, 7)]` then the value of a31 A31 + a32 A32 + a33 A33 is ______.


For a invertible matrix A if A(adjA) = `[(10, 0),(0, 10)]`, then |A| = ______.


If A = `[(cos α, sin α),(-sin α, cos α)]`, then find α satisfying `0 < α < π/2`, when A + AT = `sqrt(2)  l_2` where AT is transpose of A.


If matrix A = `[(1, -1),(2, 3)]`, then A2 – 4A + 5I is where I is a unit matix.


if `A = [(2,-1,1),(-1,2,-1),(1,-1,2)]` then find A−1 by the adjoint method.


If A = `[(2, 3),(4, 5)]`, show that A2 – 7A – 2I = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×