Advertisements
Advertisements
प्रश्न
State whether the following is True or False :
If A and B are conformable for the product AB, then (AB)T = ATBT.
विकल्प
True
False
उत्तर
(AB)T = BTAT False.
APPEARS IN
संबंधित प्रश्न
Find the inverse of the matrix `[(1 2 3),(1 1 5),(2 4 7)]` by adjoint method
Find the matrix of the co-factor for the following matrix.
`[(1,3),(4,-1)]`
Find the inverse of the following matrix by the adjoint method.
`[(1, 0, 0),(3, 3, 0),(5, 2, -1)]`
Find the inverse of the following matrix.
`[(1,2),(2,-1)]`
Find the inverse of the following matrix (if they exist):
`[(2,1),(7,4)]`
Choose the correct answer from the given alternatives in the following question:
If A = `[(lambda,1),(-1, -lambda)]`, and A-1 does not exist if λ = _______
Fill in the blank :
(AT)T = _______
Fill in the blank :
If A = `[(2, 1),(1, 1)] "and" "A"^-1 = [(1, 1),(x, 2)]`, then x = _______
State whether the following is True or False :
Singleton matrix is only row matrix.
Find inverse of the following matrices (if they exist) by elementary transformations :
`[(2, -3, 3),(2, 2, 3),(3, -2, 2)]`
A = `[(cos alpha, - sin alpha, 0),(sin alpha, cos alpha, 0),(0, 0, 1)]`, then A−1 is
If A = `[(1, 2, 3),(1, 1, 5),(2, 4, 7)]`, then find the value of a31A31 + a32A32 + a33A33.
If A = `[("a", "b"),("c", "d")]` then find the value of |A|−1
If A(α) = `[(cos alpha, sin alpha),(-sin alpha, cos alpha)]` then prove that A2(α) = A(2α)
Choose the correct alternative:
If A is a non singular matrix of order 3, then |adj (A)| = ______
Find the inverse of matrix B = `[(3,1, 5),(2, 7, 8),(1, 2, 5)]` by using adjoint method
Find m if the matrix `[(1,1,3),(2,λ,4),(9,7,11)]` has no inverse.
The sum of three numbers is 20. If we multiply the first by 2 and add the second number and subtract the third we get 23. If we multiply the first by 3 and add second and third to it, we get 46. By using the matrix inversion method find the numbers.
The inverse matrix of `((4/5,(-5)/12),((-2)/5,1/2))` is
If A = `[(a,b),(c,d)]` such that ad - bc ≠ 0 then A-1 is
Which of the following matrix has no inverse
The inverse matrix of `((3,1),(5,2))` is
If A is an invertible matrix of order 2 then det (A-1) be equal
The matrix M = `[(0,1,2),(1,2,3),(3,1,1)]` and its inverse is N = [nij]. What is the element n23 of matrix N?
If A = `[(2,3),(1,2)]`, B = `[(1,0),(3,1)]`, then B-1A-1 = ?
If A = `[(0, -1, 0), (1, 0, 0), (0, 0, -1)]`, then A-1 is ______
If A = `[(3, -3, 4), (2, -3, 4), (0, -1, 1)]` then A-1 = ______
If A and Bare square matrices of order 3 such that |A| = 2, |B| = 4, then |A(adj B)| = ______.
If A2 - A + I = 0, then A-1 = ______.
The matrix `[(lambda, 1, 0),(0, 3, 5),(0, -3, lambda)]` is invertible ______.
If A = `[(cos theta, sin theta, 0),(-sintheta, costheta, 0),(0, 0, 1)]`, where A11, A11, A13 are co-factors of a11, a12, a13 respectively, then the value of a11A11 + a12A12 + a13A13 = ______.
If A = `[(2, -3, 3),(2, 2, 3),(3, "p", 2)]` and A–1 = `[(-2/5, 0, 3/5),(-1/5, 1/5, "q"),(2/5, 1/5, -2/5)]`, then ______.
Find the cofactors of the elements of the matrix
`[(-1, 2),(-3, 4)]`
A–1 exists if |A| = 0.
If A = `[(0, 0, 1),(0, 1, 0),(1, 0, 0)]`, then A2008 is equal to ______.
Matrix A = `[(1, 2, 3),(1, 1, 5),(2, 4, 7)]` then the value of a31 A31 + a32 A32 + a33 A33 is ______.
If matrix A = `[(1, -1),(2, 3)]`, then A2 – 4A + 5I is where I is a unit matix.
If A = `[(4, 3, 2),(-1, 2, 0)]`, B = `[(1, 2),(-1, 0),(1, -2)]`
Find (AB)–1 by adjoint method.
Solution:
AB = `[(4, 3, 2),(-1, 2, 0)] [(1, 2),(-1, 0),(1, -2)]`
AB = [ ]
|AB| = `square`
M11 = –2 ∴ A11 = (–1)1+1 . (–2) = –2
M12 = –3 A12 = (–1)1+2 . (–3) = 3
M21 = 4 A21 = (–1)2+1 . (4) = –4
M22 = 3 A22 = (–1)2+2 . (3) = 3
Cofactor Matrix [Aij] = `[(-2, 3),(-4, 3)]`
adj (A) = [ ]
A–1 = `1/|A| . adj(A)`
A–1 = `square`