Advertisements
Advertisements
प्रश्न
A = `[(cos alpha, - sin alpha, 0),(sin alpha, cos alpha, 0),(0, 0, 1)]`, then A−1 is
विकल्प
A
− A
adj (A)
− adj (A)
उत्तर
adj (A)
APPEARS IN
संबंधित प्रश्न
Find the inverse of matrix A by using adjoint method; where A = `[(1, 0, 1), (0, 2, 3), (1, 2, 1)]`
Find the inverse of the following matrix by elementary row transformations if it exists.
`A = [(1, 2, -2), (0, -2, 1), (-1, 3, 0)]`
Solve the following equations by the inversion method :
2x + 3y = - 5 and 3x + y = 3.
Find the co-factor of the element of the following matrix.
`[(1,-1,2),(-2,3,5),(-2,0,-1)]`
Find the adjoint of the following matrix.
`[(2,-3),(3,5)]`
Find the inverse of the following matrix by the adjoint method.
`[(-1,5),(-3,2)]`
Find the inverse of the following matrix by the adjoint method.
`[(2,-2),(4,3)]`
Find the inverse of the following matrix (if they exist):
`[(2,1),(7,4)]`
Find the inverse of the following matrix (if they exist):
`[(2,0,-1),(5,1,0),(0,1,3)]`
Choose the correct answer from the given alternatives in the following question:
If A = `[(1,2),(3,4)]`, and A (adj A) = kI, then the value of k is
Choose the correct answer from the given alternatives in the following question:
If A = `[(lambda,1),(-1, -lambda)]`, and A-1 does not exist if λ = _______
Choose the correct answer from the given alternatives in the following question:
If A−1 = `- 1/2[(1,-4),(-1,2)]`, then A = ______.
If ω is a complex cube root of unity, then the matrix A = `[(1, ω^2, ω),(ω^2, ω, 1),(ω, 1, ω^2)]` is
If A = `[(cos alpha, sin alpha),(-sin alpha, cos alpha)]`, then A10 = ______
A + I = `[(3, -2),(4, 1)]` then find the value of (A + I)(A − I)
If A = `[(-1),(2),(3)]`, B = `[(3, 1, -2)]`, find B'A'
Find A–1 using adjoint method, where A = `[(cos theta, sin theta),(-sin theta, cos theta)]`
If A = `[(0, 1),(2, 3),(1, -1)]` and B = `[(1, 2, 1),(2, 1, 0)]`, then find (AB)−1
If A = `[(-4, -3, -3),(1, 0, 1),(4, 4, 3)]`, find adj (A).
State whether the following statement is True or False:
Inverse of `[(2, 0),(0, 3)]` is `[(1/2, 0),(0, 1/3)]`
Find the inverse of matrix B = `[(3,1, 5),(2, 7, 8),(1, 2, 5)]` by using adjoint method
If A = `[(2,3),(1,-6)]` and B = `[(-1,4),(1,-2)]`, then verify adj (AB) = (adj B)(adj A)
Solve by matrix inversion method:
2x + 3y – 5 = 0; x – 2y + 1 = 0.
Solve by matrix inversion method:
x – y + 2z = 3; 2x + z = 1; 3x + 2y + z = 4
If A is an invertible matrix of order 2 then det (A-1) be equal
The matrix A = `[("a",-1,4),(-3,0,1),(-1,1,2)]` is not invertible only if a = _______.
If A is non-singular matrix such that (A - 2l)(A - 4l) = 0 then A + 8A-1 = ______.
If A = `[(0, -1, 0), (1, 0, 0), (0, 0, -1)]`, then A-1 is ______
If A = `[(0, 0, 1), (0, 1, 0), (1, 0, 0)]`, then A-1 = ______
If A2 - A + I = 0, then A-1 = ______.
If A = `[(5, -4), (7, -5)]`, then 3A-1 = ______
If matrix P = `[(0, -tan (θ//2)),(tanθ//2, 0)]`, then find (I – P) `[(cosθ, -sinθ),(sinθ, cosθ)]`
If A = `[(1, 2, -1),(-1, 1, 2),(2, -1, 1)]`, then det (adj (adj A)) is ______.
If A = `[(x, 1),(1, 0)]` and A = A–1, then x = ______.
If the inverse of the matrix `[(α, 14, -1),(2, 3, 1),(6, 2, 3)]` does not exist, then the value of α is ______.
If matrix A = `[(1, 2),(4, 3)]`, such that AX = I, then X is equal to ______.
For an invertible matrix A, if A (adj A) = `|(20, 0),(0, 20)|`, then | A | = ______.
If A = `[(1, 2),(3, 4)]` verify that A (adj A) = (adj A) A = |A| I