Advertisements
Advertisements
प्रश्न
Find the adjoint of the following matrix.
`[(2,-3),(3,5)]`
उत्तर
Let A = `[(2,-3),(3,5)]`
Here, a11 = 2, M11 = 5
∴ A11 = (− 1)1+1(5) = 5
a12 = − 3, M12 = 3
∴ A12 = (− 1)1+2(3) = − 3
a21 = 3, M21 = − 3
∴ A21 = (− 1)2+1(− 3) = 3
a22 = 5, M22 = 2
∴ A22 = (− 1)2+2 = 2
∴ the co-factor matrix = `[("A"_11,"A"_12),("A"_21,"A"_22)]`
= `[(5,-3),(3,2)]`
∴ adj A = `[(5,3),(-3,2)]`
APPEARS IN
संबंधित प्रश्न
Find the inverse of the following matrix by elementary row transformations if it exists.
`A = [(1, 2, -2), (0, -2, 1), (-1, 3, 0)]`
Solve the following equations by the inversion method :
2x + 3y = - 5 and 3x + y = 3.
Find the co-factor of the element of the following matrix.
`[(1,-1,2),(-2,3,5),(-2,0,-1)]`
Find the inverse of the following matrix by the adjoint method.
`[(2,-2),(4,3)]`
Find the inverse of the following matrix.
`[(0,1,2),(1,2,3),(3,1,1)]`
Find the inverse of the following matrix (if they exist):
`((1,-1),(2,3))`
Find the inverse of the following matrix (if they exist):
`[(2,1),(7,4)]`
Find the inverse of `[(1,2,3),(1,1,5),(2,4,7)]` by the adjoint method.
Choose the correct answer from the given alternatives in the following question:
For a 2 × 2 matrix A, if A(adj A) = `[(10,0),(0,10)]`, then determinant A equals
Find the inverse of the following matrices by the adjoint method `[(2, -2),(4, 5)]`.
Find matrix X, if AX = B, where A = `[(1, 2, 3),(-1, 1, 2),(1, 2, 4)] "and B" = [(1),(2),(3)]`.
Choose the correct alternative.
If a 3 x 3 matrix B has it inverse equal to B, thenB2 = _______
State whether the following is True or False :
Singleton matrix is only row matrix.
State whether the following is True or False :
A(adj. A) = |A| I, where I is the unit matrix.
Find inverse of the following matrices (if they exist) by elementary transformations :
`[(2, -3, 3),(2, 2, 3),(3, -2, 2)]`
Find inverse of the following matrices (if they exist) by elementary transformations :
`[(2, 0, -1),(5, 1, 0),(0, 1, 3)]`
If ω is a complex cube root of unity, then the matrix A = `[(1, ω^2, ω),(ω^2, ω, 1),(ω, 1, ω^2)]` is
`cos theta [(cos theta, sin theta),(-sin theta, cos theta)] + sin theta [(sin theta, - cos theta),(cos theta, sin theta)]` = ______
Find the adjoint of matrix A = `[(6, 5),(3, 4)]`
Find the inverse of A = `[(sec theta, tan theta, 0),(tan theta, sec theta, 0),(0, 0, 1)]`
Complete the following activity to verify A. adj (A) = det (A) I.
Given A = `[(2, 0, -1),(5, 1, 0),(0, 1, 3)]` then
|A| = 2(____) – 0(____) + ( ) (____)
= 6 – 0 – 5
= ______ ≠ 0
Cofactors of all elements of matrix A are
A11 = `(-1)^2 |("( )", "( )"),("( )", "( )")|` = (______),
A12 = `(-1)^3 |(5, "( )"),("( )", 3)|` = – 15,
A13 = `(-1)^4 |(5, "( )"),("( )", 1)|` = 5,
A21 = _______, A22 = _______, A23 = _______,
A31 = `(-1)^4 |("( )", "( )"),("( )", "( )")|` = (______),
A32 = `(-1)^5 |(2, "( )"),("( )", 0)|` = ( ),
A33 = `(-1)^6 |(2, "( )"),("( )", 1)|` = 2,.
Cofactors of matrix A = `[(3, "____", "____"),("____", "____",-2),(1, "____", "____")]`
adj (A) = `[("____", "____", "____"),("____", "____","____"),("____","____","____")]`
A.adj (A) = `[(2, 0, -1),(5, 1, 0),(0, 1, 3)] [("( )", -1, 1), (-15, "( )", -5),("( )", -2, "( )")] = [(1, 0, "( )"),("( )", "( )", "( )"),(0, "( )", "( )")]` = |A|I
Find the inverse of the following matrix:
`[(3,1),(-1,3)]`
If A = `[(2,3),(1,-6)]` and B = `[(-1,4),(1,-2)]`, then verify adj (AB) = (adj B)(adj A)
If A = `[(-1,2,-2),(4,-3,4),(4,-4,5)]` then, show that the inverse of A is A itself.
If X = `[(8,-1,-3),(-5,1,2),(10,-1,-4)]` and Y = `[(2,1,-1),(0,2,1),(5,p,q)]` then, find p, q if Y = X-1
If A = `[(2,3),(1,2)]`, B = `[(1,0),(3,1)]`, then B-1A-1 = ?
If A = `[(x,1),(1,0)]` and A = A , then x = ______.
If A = `[(1 + 2"i", "i"),(- "i", 1 - 2"i")]`, where i = `sqrt-1`, then A(adj A) = ______.
If ω is a complex cube root of unity and A = `[(ω,0,0),(0,ω^2,0),(0,0,1)]` then A-1 = ?
If A = `[(2, -3), (3, 5)]`, then |Adj A| is equal to ______
If the inverse of the matrix A = `[(1, 1, -1), (1, -2, 1), (2, -1, -3)]` is `1/9 [(7, 4, -1), (5, -1, -2), (3, 3, a)]`, then a is equal to ______
If A, B are two square matries, such that AB = B, BA = A and n ∈ N then (A + B)n =
If A = `[(2, 3),(a, 6)]` is a singular matrix, then a = ______.
A–1 exists if |A| = 0.
If A = `[(x, 1),(1, 0)]` and A = A–1, then x = ______.
If A = `[(1, 2),(3, 4)]` verify that A (adj A) = (adj A) A = |A| I
If A = `[(2, 3),(4, 5)]`, show that A2 – 7A – 2I = 0
If A = `[(1, 2, 4),(4, 3, -2),(1, 0, -3)]`. Show that A–1 exists and find A–1 using column transformation.
If A = `[(3, 1),(-1, 2)]`, show that A2 – 5A + 7I = 0