Advertisements
Advertisements
प्रश्न
Find matrix X, if AX = B, where A = `[(1, 2, 3),(-1, 1, 2),(1, 2, 4)] "and B" = [(1),(2),(3)]`.
उत्तर
Given,AX = B
∴ `[(1, 2, 3),(-1, 1, 2),(1, 2, 4)] "X" = [(1),(2),(3)]`
Applying R2 → R2 + R3
`[(1, 2, 3),(0, 3, 6),(1, 2, 4)] "X" = [(1),(5),(3)]`
R3 → R3 – R1, we get
`[(1, 2, 3),(0, 3, 6),(0, 0, 1)] "X" = [(1),(5),(2)]`
R2 →`R_2/3`
`[(1, 2, 3),(0, 1, 2),(0, 0, 1)] "X" = [(1),(5/3),(2)]`
Applying R2 → R2 - 2R3
`[(1, 2, 3),(0, 1, 0),(0, 0, 1)] "X" = [(1),(-7/3),(2)]`
R1 → R1 – 3R3
`[(1, 2, 0),(0, 1, 0),(0, 0, 1)] "X" = [(-5),(-7/3),(2)]`
R1 → R1 – 2R2
`[(1, 0, 0),(0, 1, 0),(0, 0, 1)] "X" = [(-1/3),(-7/3),(2)]`
IX = `[(-1/3),(-7/3),(2)]`
X = `[(-1/3),(-7/3),(2)]`
APPEARS IN
संबंधित प्रश्न
Find the co-factor of the element of the following matrix:
`[(-1, 2),(-3, 4)]`
Find the adjoint of the following matrix.
`[(2,-3),(3,5)]`
If A = `[(1,-1,2),(3,0,-2),(1,0,3)]` verify that A (adj A) = (adj A) A = | A | I
Find the inverse of the following matrix.
`[(0,1,2),(1,2,3),(3,1,1)]`
Find the inverse of the following matrix.
`[(2,0,-1),(5,1,0),(0,1,3)]`
Find the inverse of the following matrix (if they exist):
`((1,-1),(2,3))`
Find the inverse of the following matrix (if they exist):
`((2,1),(1,-1))`
Find the inverse of the following matrix (if they exist):
`[(2,0,-1),(5,1,0),(0,1,3)]`
Choose the correct answer from the given alternatives in the following question:
The inverse of A = `[(0,1,0),(1,0,0),(0,0,1)]` is
Choose the correct alternative.
If A2 + mA + nI = O and n ≠ 0, |A| ≠ 0, then A–1 = _______
Choose the correct alternative.
If a 3 x 3 matrix B has it inverse equal to B, thenB2 = _______
State whether the following is True or False :
A = `[(2, 1),(10, 5)]` is invertible matrix.
State whether the following is True or False :
A(adj. A) = |A| I, where I is the unit matrix.
If A = `[(1, -1, 1),(2, 1, -3),(1, 1, 1)]`, 10B = `[(4, 2,2),(-5, 0, ∞),(1, -2, 3)]` and B is the inverse of matrix A, then α = ______
A = `[(cos theta, - sin theta),(-sin theta, -cos theta)]` then find A−1
If A(α) = `[(cos alpha, sin alpha),(-sin alpha, cos alpha)]` then prove that A2(α) = A(2α)
A + I = `[(3, -2),(4, 1)]` then find the value of (A + I)(A − I)
If A = `[(0, 3, 3),(-3, 0, -4),(-3, 4, 0)]` and B = `[(x),(y),(z)]`, find the matrix B'(AB)
If f(x) = x2 − 2x − 3 then find f(A) when A = `[(1, 2),(2, 1)]`
If A = `[(1, 0, 0),(3, 3, 0),(5, 2, -1)]`, find A−1 by the adjoint method
Find the inverse of the following matrix:
`[(1,2,3),(0,2,4),(0,0,5)]`
Find the inverse of the following matrix:
`[(-3,-5,4),(-2,3,-1),(1,-4,-6)]`
If A = `[(2,3),(1,-6)]` and B = `[(-1,4),(1,-2)]`, then verify adj (AB) = (adj B)(adj A)
If A = `[(3,7),(2,5)]` and B = `[(6,8),(7,9)]`, then verify that (AB)-1 = B-1A-1
Solve by matrix inversion method:
2x + 3y – 5 = 0; x – 2y + 1 = 0.
Solve by matrix inversion method:
x – y + 2z = 3; 2x + z = 1; 3x + 2y + z = 4
If A = `[(a,b),(c,d)]` such that ad - bc ≠ 0 then A-1 is
Solve by using matrix inversion method:
x - y + z = 2, 2x - y = 0, 2y - z = 1
The matrix M = `[(0,1,2),(1,2,3),(3,1,1)]` and its inverse is N = [nij]. What is the element n23 of matrix N?
If A = `[(2,3),(1,2)]`, B = `[(1,0),(3,1)]`, then B-1A-1 = ?
If A = `[(2, 0, -1), (5, 1, 0), (0, 1, 3)]` and A−1 = `[(3, -1, 1), (α, 6, -5), (β, -2, 2)]`, then the values of α and β are, respectively.
If A and Bare square matrices of order 3 such that |A| = 2, |B| = 4, then |A(adj B)| = ______.
If A = `[(2, -3), (3, 5)]`, then |Adj A| is equal to ______
If A2 - A + I = 0, then A-1 = ______.
If matrix A = `[(3, -2, 4),(1, 2, -1),(0, 1, 1)]` and A–1 = `1/k` (adj A), then k is ______.
If A = `[(1, 2, -1),(-1, 1, 2),(2, -1, 1)]`, then det (adj (adj A)) is ______.
If A = `[(2, 2),(-3, 2)]`, B = `[(0, -1),(1, 0)]`, then (B–1 A–1)–1 is equal to ______.
For an invertible matrix A, if A (adj A) = `|(20, 0),(0, 20)|`, then | A | = ______.
If A = `[(3, 1),(-1, 2)]`, show that A2 – 5A + 7I = 0