हिंदी

Find matrix X, if AX = B, where A = and B[123-112124]and B=[123]. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find matrix X, if AX = B, where A = `[(1, 2, 3),(-1, 1, 2),(1, 2, 4)] "and B" = [(1),(2),(3)]`.

योग

उत्तर

Given,AX = B

∴ `[(1, 2, 3),(-1, 1, 2),(1, 2, 4)] "X" = [(1),(2),(3)]`

Applying R2 → R2 + R3

`[(1, 2, 3),(0, 3, 6),(1, 2, 4)] "X" = [(1),(5),(3)]`

R3 → R3 – R1, we get

`[(1, 2, 3),(0, 3, 6),(0, 0, 1)] "X" = [(1),(5),(2)]`

R2 →`R_2/3`

`[(1, 2, 3),(0, 1, 2),(0, 0, 1)] "X" = [(1),(5/3),(2)]`

Applying R2 → R2 - 2R3

`[(1, 2, 3),(0, 1, 0),(0, 0, 1)] "X" = [(1),(-7/3),(2)]`

R1 → R1 – 3R3

`[(1, 2, 0),(0, 1, 0),(0, 0, 1)] "X" = [(-5),(-7/3),(2)]`

R1 → R1 – 2R2

`[(1, 0, 0),(0, 1, 0),(0, 0, 1)] "X" = [(-1/3),(-7/3),(2)]`

IX = `[(-1/3),(-7/3),(2)]`

X = `[(-1/3),(-7/3),(2)]`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Matrices - Exercise 2.5 [पृष्ठ ७२]

APPEARS IN

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the co-factor of the element of the following matrix:

`[(-1, 2),(-3, 4)]`


Find the adjoint of the following matrix.

`[(2,-3),(3,5)]`


If A = `[(1,-1,2),(3,0,-2),(1,0,3)]` verify that A (adj A) = (adj A) A = | A | I


Find the inverse of the following matrix.

`[(0,1,2),(1,2,3),(3,1,1)]`


Find the inverse of the following matrix.

`[(2,0,-1),(5,1,0),(0,1,3)]`


Find the inverse of the following matrix (if they exist):

`((1,-1),(2,3))`


Find the inverse of the following matrix (if they exist):

`((2,1),(1,-1))`


Find the inverse of the following matrix (if they exist):

`[(2,0,-1),(5,1,0),(0,1,3)]`


Choose the correct answer from the given alternatives in the following question:

The inverse of A = `[(0,1,0),(1,0,0),(0,0,1)]` is


Choose the correct alternative.

If A2 + mA + nI = O and n ≠ 0, |A| ≠ 0, then A–1 = _______


Choose the correct alternative.

If a 3 x 3 matrix B has it inverse equal to B, thenB2 = _______


State whether the following is True or False :

A = `[(2, 1),(10, 5)]` is invertible matrix.


State whether the following is True or False :

A(adj. A) = |A| I, where I is the unit matrix.


If A = `[(1, -1, 1),(2, 1, -3),(1, 1, 1)]`, 10B = `[(4, 2,2),(-5, 0, ∞),(1, -2, 3)]` and B is the inverse of matrix A, then α = ______


A = `[(cos theta, - sin theta),(-sin theta, -cos theta)]` then find A−1 


If A(α) = `[(cos alpha, sin alpha),(-sin alpha, cos alpha)]` then prove that A2(α) = A(2α)


A + I = `[(3, -2),(4, 1)]` then find the value of (A + I)(A − I)


If A = `[(0, 3, 3),(-3, 0, -4),(-3, 4, 0)]` and B = `[(x),(y),(z)]`, find the matrix B'(AB)


If f(x) = x2 − 2x − 3 then find f(A) when A = `[(1, 2),(2, 1)]`


If A = `[(1, 0, 0),(3, 3, 0),(5, 2, -1)]`, find A−1 by the adjoint method


Find the inverse of the following matrix:

`[(1,2,3),(0,2,4),(0,0,5)]`


Find the inverse of the following matrix:

`[(-3,-5,4),(-2,3,-1),(1,-4,-6)]`


If A = `[(2,3),(1,-6)]` and B = `[(-1,4),(1,-2)]`, then verify adj (AB) = (adj B)(adj A)


If A = `[(3,7),(2,5)]` and B = `[(6,8),(7,9)]`, then verify that (AB)-1 = B-1A-1


Solve by matrix inversion method:

2x + 3y – 5 = 0; x – 2y + 1 = 0.


Solve by matrix inversion method:

x – y + 2z = 3; 2x + z = 1; 3x + 2y + z = 4


If A = `[(a,b),(c,d)]` such that ad - bc ≠ 0 then A-1 is


Solve by using matrix inversion method:

x - y + z = 2, 2x - y = 0, 2y - z = 1


The matrix M = `[(0,1,2),(1,2,3),(3,1,1)]` and its inverse is N = [nij]. What is the element n23 of matrix N?


If A = `[(2,3),(1,2)]`, B = `[(1,0),(3,1)]`, then B-1A-1 = ?


If A = `[(2, 0, -1), (5, 1, 0), (0, 1, 3)]` and A−1 = `[(3, -1, 1), (α, 6, -5), (β, -2, 2)]`, then the values of α and β are, respectively.


If A and Bare square matrices of order 3 such that |A| = 2, |B| = 4, then |A(adj B)| = ______.


If A = `[(2, -3), (3, 5)]`, then |Adj A| is equal to ______ 


If A2 - A + I = 0, then A-1 = ______.


If matrix A = `[(3, -2, 4),(1, 2, -1),(0, 1, 1)]` and A–1 = `1/k` (adj A), then k is ______.


If A = `[(1, 2, -1),(-1, 1, 2),(2, -1, 1)]`, then det (adj (adj A)) is ______.


If A = `[(2, 2),(-3, 2)]`, B = `[(0, -1),(1, 0)]`, then (B–1 A–1)–1 is equal to ______.


For an invertible matrix A, if A (adj A) = `|(20, 0),(0, 20)|`, then | A | = ______.


If A = `[(3, 1),(-1, 2)]`, show that A2 – 5A + 7I = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×