हिंदी

Solve the following equations by method of inversion.x + 2y = 2, 2x + 3y = 3 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following equations by method of inversion.
x + 2y = 2, 2x + 3y = 3

योग

उत्तर

Matrix form of the given system of equations is
`[(1, 2),(2, 3)] [(x),(y)] = [(2),(3)]`
This is of the form AX = B.
where A = `[(1, 2),(2, 3)], "X" = [(x),(y)] "and B" = [(2),(3)]`
To determine X, we have to find A–1.

|A| = `|(1, 2),(2, 3)|`

= 3 – 4
= – 1 ≠ 0
∴ A–1 exists.
Consider AA–1 = I
∴ `[(1, 2),(2, 3)] "A"^-1 = [(1, 0),(0, 1)]`

Applying R2 → R2 – 2R1, we get

`[(1, 2),(0, -1)] "A"^-1 = [(1, 0),(-2, 1)]`

Applying R2 → (– 1)R2, we get

`[(1, 2),(0, 1)] "A"^-1 = [(1, 0),(2, -1)]`

Applying R1 → R1 – 2R2, we get

`[(1, 0),(0, 1)] "A"^-1 = [(-3, 2),(2, -1)]`

∴ A–1 = `[(-3, 2),(2, -1)]`

Pre-multiplying AX = B by A– 1, we get
A–1(AX) =A–1B
∴ (A–1A)X = A–1B
∴ IX = A–1B
∴ X = A–1B

∴ X = `[(-3, 2),(2, -1)] [(2),(3)]`

∴ `[(x),(y)] = [(-6 + 6),(4 - 3)] = [(0),(1)]`

∴ By equality of matrices, we get
x = 0 and y = 1.

shaalaa.com
Application of Matrices
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Matrices - Exercise 2.6 [पृष्ठ ७९]

APPEARS IN

संबंधित प्रश्न

Solve the following equations by the reduction method.

2x + y = 5, 3x + 5y = – 3


Express the following equations in matrix form and solve them by the method of reduction:

`x + y = 1, y + z = 5/3, z + x 4/33`.


Express the following equations in matrix form and solve them by the method of reduction:

2x - y + z = 1, x + 2y + 3z = 8, 3x + y - 4z = 1.


The cost of 4 pencils, 3 pens, and 2 books is ₹ 150. The cost of 1 pencil, 2 pens, and 3 books is ₹ 125. The cost of 6 pencils, 2 pens, and 3 books is ₹ 175. Find the cost of each item by using matrices.


Express the following equations in matrix form and solve them by method of reduction.

x + y + z = 1, 2x + 3y + 2z = 2 and x + y + 2z = 4


Find x, y, z, if `{5[(0, 1),(1, 0),(1, 1)] - [(2, 1),(3, - 2),(1, 3)]} [(2),(1)] = [(x - 1),(y + 1),(2z)]`


Solve the following :

Two farmers Shantaram and Kantaram cultivate three crops rice, wheat and groundnut. The sale (in Rupees) of these crops by both the farmers for the month of April and May 2016 is given below,

April 2016 (in ₹.)
  Rice Wheat Groundnut
Shantaram 15000 13000 12000
Kantaram 18000 15000 8000
May 2016 (in ₹.)
  Rice Wheat Groundnut
Shantaram 18000 15000 12000
Kantaram 21000 16500 16000

Find : The total sale in rupees for two months of each farmer for each crop.


Solve the following :

Two farmers Shantaram and Kantaram cultivate three crops rice, wheat and groundnut. The sale (in Rupees) of these crops by both the farmers for the month of April and May 2016 is given below,

April 2016 (in ₹.)
  Rice Wheat Groundnut
Shantaram 15000 13000 12000
Kantaram 18000 15000 8000
May 2016 (in ₹.)
  Rice Wheat Groundnut
Shantaram 18000 15000 12000
Kantaram 21000 16500 16000

Find : the increase in sale from April to May for every crop of each farmer.


Solve the following equations by method of inversion :

4x – 3y – 2 = 0, 3x – 4y + 6 = 0


Solve the following equations by method of inversion : x + y – z = 2, x – 2y + z = 3 and 2x – y – 3z = – 1


Solve the following equations by method of inversion : x – y + z = 4, 2x + y – 3z = 0 , x + y + z = 2


Solve the following equations by method of reduction :

x + 2y - z = 3 , 3x – y + 2z = 1 and 2x – 3y + 3z = 2


Solve the following equations by method of reduction :

x – 3y + z = 2 , 3x + y + z = 1 and 5x + y + 3z = 3


Complete the following activity.

The cost of 4 kg potato, 3kg wheat and 2kg rice is ₹ 60. The cost of 1 kg potato, 2 kg wheat and 3kg rice is ₹ 45. The cost of 6 kg potato, 3 kg rice and 2 kg wheat is ₹ 70. Find the per kg cost of each item by matrix method.

Solution: Let the cost of potato, wheat and rice per kg be x, y and z respectively.

Therefore by given conditions,

4x + ( )y + 2( ) = ( )

x + 2y + ( )( ) = ( )

( )x + 2y + 3z = ( )

Matrix form of above equations is,

`[("( )", 3, "( )"),(1, "( )", 3),("( )", 2, "( )")] [(x),(y),(z)] =[("( )"), (45), ("( )")]`

R1 ↔ R2

`[(1, 2, 3),("( )", "( )", "( )"),(6, 2, 3)] [(x),(y),(z)] =[("( )"), (60), ("( )")]`

R2 – 4R1, R3 – 6R1

`[(1, 2, 3),("( )", -5, "( )"),(0, "( )", -15)] [(x),(y),(z)] =[(45), ("( )"), (-200)]`

`(-1)/5 "R"_2, (-1)/5 "R"_3`

`[("( )", 2, 3),(0, "( )", 2),(0, 2, "( )")] [(x),("( )"),(z)] =[(45), (24), (40)]`

R3 – 2R2

`[(1, 2, 3),(0, 1, 2),(0, 0, -1)] [(x),(y),(z)] =[("( )"), ("( )"), ("( )")]`

By pre multiplying we get,

x + 2y + ( )z = ( )    .....(i)

y + 2z = 24    ......(ii)

–z = ( )      ......(iii)

From (iii), we get, z = ( )

From (ii), we get, y = ( )

From (i), we get, x = ( )

Therefore the cost of Potato, Wheat and Rice per kg are _______, _______ and _______ respectively.


If the volume of the parallelepiped whose conterminus edges are along the vectors a, b, c is 12, then the volume of the tetrahedron whose conterminus edges are a + b, b + c and c + a is ______.


If A = `[(1, -1, 3), (2, 5, 4)]`, then R1 ↔ R2 and C3 → C3 + 2C2 gives ______


Adjoint of ______


If A =`[(1, -1), (2, 3)]` and adj (A) = `[(a, b), (-2, 1)]`, then ______ 


Solve the following system of equations by the method of inversion.

x – y + z = 4, 2x + y – 3z = 0, x + y + z = 2


Solve the following system of equations by the method of reduction:

x + y + z = 6, y + 3z = 11, x + z = 2y.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×