हिंदी

Solve the following equations by method of inversion : x + y – z = 2, x – 2y + z = 3 and 2x – y – 3z = – 1 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following equations by method of inversion : x + y – z = 2, x – 2y + z = 3 and 2x – y – 3z = – 1

योग

उत्तर

Matrix form of the given system of equations is

`[(1, 1, -1),(1, -2, 1),(2, -1, -3)] [(x),(y)] = [(2),(3),(-1)]`

This is of the form AX = B, where

A = `[(1, 1, -1),(1, -2, 1),(2, -1, -3)],"X" = [(x),(y)] "and B" = [(2),(3),(-1)]`

To determine X, we have to find A–1.

|A|= `|(1, 1, -1),(1, -2, 1),(2, -1, -3)|`

= 1(6 + 1) – 1(–3 – 2) –1(–1 + 4)
= 1(7) –1(–5)–1(3)
= 7 + 5 – 3
= 9 ≠ 0
∴ A–1 exists.
Consider AA–1

∴ `[(1, 1, -1),(1, -2, 1),(2, -1, -3)]"A"^-1 = [(1, 0, 0),(0, 1, 0),(0, 0, 1)]`

Applying R2 → R2 – R1 and R3 → R3 – 2R1, we get

`[(1, 1, -1),(0, -3, 2),(0, -3, -1)] "A"^-1 = [(1, 0, 0),(-1, 1, 0),(-2, 0, 1)]`

Applying R2 → `((-1)/3)` R2, we get

`[(1, 1, -1),(0, 1, -2/3),(0, -3, -1)] "A"^-1 = [(1, 0, 0),(1/3, (-1)/3, 0),(-2, 0, 1)]`

Applying R1 → R1 – R2 and R3 → R3 + 3R2, we get

`[(1, 0, -1/3),(0, 1, (-2)/3),(0, 0, -3)] "A"^-1 = [(2/3, 1/3, 0),(1/3, -1/3, 0),(-1, -1, 1)]`

Applying R3 → `(-1/3)` R3, we get

`[(1, 0, -1/3),(0, 1, -2/3),(0, 0, 1)] "A"^-1 = [(2/3, 1/3, 0),(1/3, -1/3, 0),(1/3, 1/3, -1/3)]`

Applying R1 → R1 + `(-1/3)` R3 and R2 → R2 + `(2/3)` R3, we get

`[(1, 0, 0),(0, 1, 0),(0, 0, 1)] "A"^-1 = [(7/9, 4/9, -1/9),(5/9, -1/9, -2/9),(1/3, 1/3, -1/3)]`

∴ A–1 = `(1)/(9)[(7, 4, -1),(5, -1, -2),(3, 3, -3)]`

Pre-multiplying AX = B by A–1, we get
A–1(AX) = A–1B
∴ (A–1A) X = A–1B
∴ IX = A–1B
∴ X = A–1B

∴ X = `(1)/(9)[(7, 4, -1),(5, -1, -2),(3, 3, -3)][(2),(3),(-1)]`

∴ `[(x),(y),(z)] = (1)/(9)[(14 + 12 + 1),(10 - 3 + 2),(6 + 9 + 3)]`

= `(1)/(9)[(27),(9),(18)]`

= `[(3),(1),(2)]`

∴ By equality of martices, we get
x = 3, y = 1 and z = 2.

shaalaa.com
Application of Matrices
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Matrices - Miscellaneous Exercise 2 [पृष्ठ ८५]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 2 Matrices
Miscellaneous Exercise 2 | Q 4.18 | पृष्ठ ८५

संबंधित प्रश्न

Solve the following equations by inversion method.

2x + 6y = 8, x + 3y = 5


Solve the following equations by the reduction method.

5x + 2y = 4, 7x + 3y = 5


Solve the following equations by inversion method:

x + y = 4, 2x - y = 5


Solve the following equations by the method of inversion:

x + y+ z = 1, 2x + 3y + 2z = 2,
ax + ay + 2az = 4, a ≠ 0.


Express the following equations in matrix form and solve them by the method of reduction:

x - y + z = 1, 2x - y = 1, 3x + 3y - 4z = 2


Express the following equations in matrix form and solve them by the method of reduction:

2x - y + z = 1, x + 2y + 3z = 8, 3x + y - 4z = 1.


Express the following equations in matrix form and solve them by the method of reduction:

x + 2y + z = 8, 2x + 3y - z = 11, 3x - y - 2z = 5.


The sum of three numbers is 6. Thrice the third number when added to the first number, gives 7. On adding three times the first number to the sum of second and third numbers, we get 12. Find the three number by using matrices.


Solve the following equations by the method of inversion:

2x + 3y = - 5, 3x + y = 3


Solve the following equations by method of inversion.
2x + y = 5, 3x + 5y = – 3


Solve the following equation by the method of inversion.

2x – y + z = 1,
x + 2y + 3z = 8,
3x + y – 4z = 1


Express the following equations in matrix form and solve them by method of reduction.
x + 3y  = 2, 3x + 5y = 4


The sum of the cost of one Economic book, one Co-operation book and one account book is ₹ 420. The total cost of an Economic book, 2 Co-operation books and an Account book is ₹ 480. Also the total cost of an Economic book, 3 Co-operation books and 2 Account books is ₹ 600. Find the cost of each book using matrix method.


Solve the following :

Two farmers Shantaram and Kantaram cultivate three crops rice, wheat and groundnut. The sale (in Rupees) of these crops by both the farmers for the month of April and May 2016 is given below,

April 2016 (in ₹.)
  Rice Wheat Groundnut
Shantaram 15000 13000 12000
Kantaram 18000 15000 8000
May 2016 (in ₹.)
  Rice Wheat Groundnut
Shantaram 18000 15000 12000
Kantaram 21000 16500 16000

Find : The total sale in rupees for two months of each farmer for each crop.


Solve the following equations by method of inversion : x – y + z = 4, 2x + y – 3z = 0 , x + y + z = 2


Solve the following equations by method of reduction :

x – 3y + z = 2 , 3x + y + z = 1 and 5x + y + 3z = 3


Adjoint of ______


Solve the following system of equations by the method of inversion.

x – y + z = 4, 2x + y – 3z = 0, x + y + z = 2


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×