Advertisements
Advertisements
प्रश्न
Solve the following equations by the reduction method.
5x + 2y = 4, 7x + 3y = 5
उत्तर
`[(5,2),(7,3)][("x"),("y")]=[(4),(5)]`
This is the form AX = B,
Where A = `[(5,2),(7,3)][("x"),("y")] and "B" =[(4),(5)]`
Applying `"R"_2 →"R"_2 - "R"_1`, we get
`[(5,2),(2,1)][("x"),("y")]=[(4),(1)]`
Applying `"R"_1 →"R"_1 - 2"R"_2`, we get
`[(1,0),(2,1)][("x"),("y")]=[(2),(1)]`
∴ `[(x + 0),(2x + y)]=[(2),(1)]`
∴ By equality of matrics, we get
x = 2 ...(i)
2x + y = 1 ...(ii)
Substituting x = 2 in equation (ii), we get
2(2) + y = 1
∴ y = 1 - 4 = - 3
∴ x = 2 and y = - 3 is the required solution.
APPEARS IN
संबंधित प्रश्न
Solve the following equations by inversion method.
x + 2y = 2, 2x + 3y = 3
Solve the following equations by the reduction method.
2x + y = 5, 3x + 5y = – 3
Solve the following equations by the reduction method.
x + 3y = 2, 3x + 5y = 4
Solve the following equations by the reduction method.
3x – y = 1, 4x + y = 6
Solve the following equations by inversion method:
x + y = 4, 2x - y = 5
Solve the following equation by the method of inversion:
2x - y = - 2, 3x + 4y = 3
Solve the following equations by the method of inversion:
x + y+ z = 1, 2x + 3y + 2z = 2,
ax + ay + 2az = 4, a ≠ 0.
Solve the following equation by the method of inversion:
5x − y + 4z = 5, 2x + 3y + 5z = 2 and 5x − 2y + 6z = −1
Express the following equations in matrix form and solve them by the method of reduction:
`x + y = 1, y + z = 5/3, z + x 4/33`.
The sum of three numbers is 6. Thrice the third number when added to the first number, gives 7. On adding three times the first number to the sum of second and third numbers, we get 12. Find the three number by using matrices.
An amount of ₹ 5000 is invested in three types of investments, at interest rates 6%, 7%, 8% per annum respectively. The total annual income from these investments is ₹ 350. If the total annual income from the first two investments is ₹ 70 more than the income from the third, find the amount of each investment using matrix method.
Express the following equations in matrix form and solve them by the method of reduction:
x + 3y + 2z = 6,
3x − 2y + 5z = 5,
2x − 3y + 6z = 7
Solve the following equations by method of inversion.
x + 2y = 2, 2x + 3y = 3
Solve the following equations by method of inversion.
2x + y = 5, 3x + 5y = – 3
Solve the following equation by the method of inversion.
2x – y + z = 1,
x + 2y + 3z = 8,
3x + y – 4z = 1
Solve the following equations by method of inversion.
x + y + z = 1, x – y + z = 2 and x + y – z = 3
Express the following equations in matrix form and solve them by method of reduction.
x + 3y = 2, 3x + 5y = 4
Express the following equations in matrix form and solve them by method of reduction.
3x – y = 1, 4x + y = 6
If x + y + z = 3, x + 2y + 3z = 4, x + 4y + 9z = 6, then (y, z) = _______
Find x, y, z, if `{5[(0, 1),(1, 0),(1, 1)] - [(2, 1),(3, - 2),(1, 3)]} [(2),(1)] = [(x - 1),(y + 1),(2z)]`
Solve the following :
Two farmers Shantaram and Kantaram cultivate three crops rice, wheat and groundnut. The sale (in Rupees) of these crops by both the farmers for the month of April and May 2016 is given below,
April 2016 (in ₹.) | |||
Rice | Wheat | Groundnut | |
Shantaram | 15000 | 13000 | 12000 |
Kantaram | 18000 | 15000 | 8000 |
May 2016 (in ₹.) | |||
Rice | Wheat | Groundnut | |
Shantaram | 18000 | 15000 | 12000 |
Kantaram | 21000 | 16500 | 16000 |
Find : The total sale in rupees for two months of each farmer for each crop.
Solve the following equations by method of inversion :
4x – 3y – 2 = 0, 3x – 4y + 6 = 0
Solve the following equations by method of reduction :
x – 3y + z = 2 , 3x + y + z = 1 and 5x + y + 3z = 3
If A2 + 5A + 3I = 0, |A| ≠ 0, then A–1 = ______
Complete the following activity.
The cost of 4 kg potato, 3kg wheat and 2kg rice is ₹ 60. The cost of 1 kg potato, 2 kg wheat and 3kg rice is ₹ 45. The cost of 6 kg potato, 3 kg rice and 2 kg wheat is ₹ 70. Find the per kg cost of each item by matrix method.
Solution: Let the cost of potato, wheat and rice per kg be x, y and z respectively.
Therefore by given conditions,
4x + ( )y + 2( ) = ( )
x + 2y + ( )( ) = ( )
( )x + 2y + 3z = ( )
Matrix form of above equations is,
`[("( )", 3, "( )"),(1, "( )", 3),("( )", 2, "( )")] [(x),(y),(z)] =[("( )"), (45), ("( )")]`
R1 ↔ R2
`[(1, 2, 3),("( )", "( )", "( )"),(6, 2, 3)] [(x),(y),(z)] =[("( )"), (60), ("( )")]`
R2 – 4R1, R3 – 6R1
`[(1, 2, 3),("( )", -5, "( )"),(0, "( )", -15)] [(x),(y),(z)] =[(45), ("( )"), (-200)]`
`(-1)/5 "R"_2, (-1)/5 "R"_3`
`[("( )", 2, 3),(0, "( )", 2),(0, 2, "( )")] [(x),("( )"),(z)] =[(45), (24), (40)]`
R3 – 2R2
`[(1, 2, 3),(0, 1, 2),(0, 0, -1)] [(x),(y),(z)] =[("( )"), ("( )"), ("( )")]`
By pre multiplying we get,
x + 2y + ( )z = ( ) .....(i)
y + 2z = 24 ......(ii)
–z = ( ) ......(iii)
From (iii), we get, z = ( )
From (ii), we get, y = ( )
From (i), we get, x = ( )
Therefore the cost of Potato, Wheat and Rice per kg are _______, _______ and _______ respectively.
If A = `[(1, -1, 3), (2, 5, 4)]`, then R1 ↔ R2 and C3 → C3 + 2C2 gives ______
If `[(1, -1, x), (1, x, 1), (x, -1, 1)]` has no inverse, then the real value of x is ______
Adjoint of ______
If A =`[(1, -1), (2, 3)]` and adj (A) = `[(a, b), (-2, 1)]`, then ______
Solve the following system of equations by the method of inversion.
x – y + z = 4, 2x + y – 3z = 0, x + y + z = 2
Solve the following system of equations by the method of reduction:
x + y + z = 6, y + 3z = 11, x + z = 2y.