Advertisements
Advertisements
प्रश्न
A–1 exists if |A| = 0.
विकल्प
True
False
उत्तर
This statement is False.
Explanation:
A–1 exists if |A| ≠ 0.
APPEARS IN
संबंधित प्रश्न
Find the inverse of the matrix `[(1 2 3),(1 1 5),(2 4 7)]` by adjoint method
Find the inverse of the following matrix by elementary row transformations if it exists.
`A = [(1, 2, -2), (0, -2, 1), (-1, 3, 0)]`
If A = `[(1, 3), (3, 1)]`, Show that A2 - 2A is a scalar matrix.
Find the adjoint of the following matrix.
`[(2,-3),(3,5)]`
Find the adjoint of the following matrix.
`[(1, -1, 2),(-2, 3, 5),(-2, 0, -1)]`
Find the inverse of the following matrix.
`[(2, -3),(-1, 2)]`
Find the inverse of the following matrix.
`[(0,1,2),(1,2,3),(3,1,1)]`
Find the inverses of the following matrices by the adjoint method:
`[(1,2,3),(0,2,4),(0,0,5)]`
Find AB, if A = `((1,2,3),(1,-2,-3))` and B = `((1,-1),(1,2),(1,-2))`. Examine whether AB has inverse or not.
Find the inverse of the following matrix (if they exist):
`[(2,-3),(5,7)]`
Choose the correct answer from the given alternatives in the following question:
If A = `[(lambda,1),(-1, -lambda)]`, and A-1 does not exist if λ = _______
Choose the correct answer from the given alternatives in the following question:
If A = `[("cos"alpha,-"sin"alpha),("sin"alpha,"cos"alpha)]`, then A-1 = _____
Choose the correct answer from the given alternatives in the following question:
The inverse of A = `[(0,1,0),(1,0,0),(0,0,1)]` is
Choose the correct answer from the given alternatives in the following question:
For a 2 × 2 matrix A, if A(adj A) = `[(10,0),(0,10)]`, then determinant A equals
Choose the correct answer from the given alternatives in the following question:
If A−1 = `- 1/2[(1,-4),(-1,2)]`, then A = ______.
If A is a no singular matrix, then det (A–1) = _______
State whether the following is True or False :
Singleton matrix is only row matrix.
State whether the following is True or False :
A(adj. A) = |A| I, where I is the unit matrix.
Check whether the following matrices are invertible or not:
`[(1, 0),(0, 1)]`
Check whether the following matrices are invertible or not:
`[(1, 1),(1, 1)]`
Check whether the following matrices are invertible or not:
`[(1, 2, 3),(2, 4, 5),(2, 4, 6)]`
If A = `[(4, -1),(-1, "k")]` such that A2 − 6A + 7I = 0, then K = ______
If A = `[(3, 1),(5, 2)]`, and AB = BA = I, then find the matrix B
A + I = `[(3, -2),(4, 1)]` then find the value of (A + I)(A − I)
If A = `[(0, 3, 3),(-3, 0, -4),(-3, 4, 0)]` and B = `[(x),(y),(z)]`, find the matrix B'(AB)
If A = `[(6, 5),(5, 6)]` and B = `[(11, 0),(0, 11)]` then find A'B'
If A = `[(0, 4, 3),(1, -3, -3),(-1, 4, 4)]`, then find A2 and hence find A−1
If A = `[(1, 0, 0),(3, 3, 0),(5, 2, -1)]`, find A−1 by the adjoint method
Find the inverse of the following matrix:
`[(1,-1),(2,3)]`
If A = `[(2,3),(1,-6)]` and B = `[(-1,4),(1,-2)]`, then verify adj (AB) = (adj B)(adj A)
If A = `[(-1,2,-2),(4,-3,4),(4,-4,5)]` then, show that the inverse of A is A itself.
If A-1 = `[(1,0,3),(2,1,-1),(1,-1,1)]` then, find A.
Find m if the matrix `[(1,1,3),(2,λ,4),(9,7,11)]` has no inverse.
Solve by matrix inversion method:
x – y + 2z = 3; 2x + z = 1; 3x + 2y + z = 4
If A = `[(a,b),(c,d)]` such that ad - bc ≠ 0 then A-1 is
If A = `((-1,2),(1,-4))` then A(adj A) is
The matrix A = `[("a",-1,4),(-3,0,1),(-1,1,2)]` is not invertible only if a = _______.
The sum of the cofactors of the elements of second row of the matrix `[(1, 3, 2), (-2, 0, 1), (5, 2, 1)]` is ____________.
If A = `[(2, 0, -1), (5, 1, 0), (0, 1, 3)]` and A−1 = `[(3, -1, 1), (α, 6, -5), (β, -2, 2)]`, then the values of α and β are, respectively.
If A = `[(1 + 2"i", "i"),(- "i", 1 - 2"i")]`, where i = `sqrt-1`, then A(adj A) = ______.
If A and Bare square matrices of order 3 such that |A| = 2, |B| = 4, then |A(adj B)| = ______.
If A = `[(2, -3), (3, 5)]`, then |Adj A| is equal to ______
If A = `[(5, -4), (7, -5)]`, then 3A-1 = ______
If A = `[(1,-1,1),(2,1,-3),(1,1,1)]`, then the sum of the elements of A-1 is ______.
If A = `[(cos theta, sin theta, 0),(-sintheta, costheta, 0),(0, 0, 1)]`, where A11, A11, A13 are co-factors of a11, a12, a13 respectively, then the value of a11A11 + a12A12 + a13A13 = ______.
The inverse of the matrix A = `[(3, 0, 0),(0, 4, 0),(0, 0, 5)]` is ______.
Find the cofactors of the elements of the matrix
`[(-1, 2),(-3, 4)]`
If A = `[(2, 3),(a, 6)]` is a singular matrix, then a = ______.
The inverse of the matrix `[(1, 0, 0),(3, 3, 0),(5, 2, -1)]` is ______.
For a invertible matrix A if A(adjA) = `[(10, 0),(0, 10)]`, then |A| = ______.
If the inverse of the matrix `[(α, 14, -1),(2, 3, 1),(6, 2, 3)]` does not exist, then the value of α is ______.
If A = `[(2, 3),(4, 5)]`, show that A2 – 7A – 2I = 0