हिंदी

Find the inverse of the following matrix (if they exist): [2-357] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the inverse of the following matrix (if they exist):

`[(2,-3),(5,7)]`

योग

उत्तर

Let A = `[(2,-3),(5,7)]`

∴ |A| = `|(2,-3),(5,7)| = 14 + 15 = 29 ne 0`

∴ A-1 exists.

Consider AA-1 = I

∴ `[(2,-3),(5,7)] "A"^-1 = [(1,0),(0,1)]`

By 3R1, we get,

`[(6,-9),(5,7)] "A"^-1 = [(3,0),(0,1)]`

By R1 - R2, we get,

`[(1,-16),(5,7)] "A"^-1 = [(3,-1),(0,1)]`

By R2 - 5R1, we get,

`[(1,-16),(0,87)] "A"^-1 = [(3,-1),(-15,6)]`

By `(1/87)"R"_2,`we get

`[(1,-16),(0,1)] "A"^-1 = [(3,-1),(-5/29,2/29)]`

By R1 + 16R2, we get,

`[(1,0),(0,1)]"A"^-1 = [(7/29,3/29),(-5/29,2/29)]`

∴ A-1 = `1/29 [(7,3),(-5,2)]`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Matrics - Miscellaneous exercise 2 (A) [पृष्ठ ५३]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 2 Matrics
Miscellaneous exercise 2 (A) | Q 7.04 | पृष्ठ ५३

संबंधित प्रश्न

Find the inverse of the following matrix by elementary row transformations if it exists.
`A = [(1, 2, -2), (0, -2, 1), (-1, 3, 0)]`


Find the inverse of the following matrix by the adjoint method.

`[(1, 0, 0),(3, 3, 0),(5, 2, -1)]`


Find the inverse of the following matrix.

`[(2, -3),(-1, 2)]`


Find the inverse of the following matrix.

`[(0,1,2),(1,2,3),(3,1,1)]`


Find the inverses of the following matrices by the adjoint method:

`[(1,2,3),(0,2,4),(0,0,5)]`


Find the inverse of `[(1,2,3),(1,1,5),(2,4,7)]` by the adjoint method.


Adjoint of `[(2, -3),(4, -6)]` is _______


Fill in the blank :

If A = `[(2, 1),(1, 1)] "and" "A"^-1 = [(1, 1),(x, 2)]`, then x = _______


A = `[(cos alpha, - sin alpha,  0),(sin alpha, cos alpha,  0),(0, 0, 1)]`, then A−1 is


The solution (x, y, z) of the equation `[(1, 0, 1),(-1, 1, 0),(0, -1, 1)] [(x),(y),(z)] = [(1),(1),(2)]` is (x, y, z) =


`cos theta [(cos theta, sin theta),(-sin theta, cos  theta)] + sin theta [(sin theta, - cos theta),(cos theta, sin theta)]` = ______


If A = `[(0, 0, -1),(0, -1, 0),(-1, 0, 0)]`, then the only correct statement about the matrix A is ______


If A = `[(3, 1),(5, 2)]`, and AB = BA = I, then find the matrix B


A + I = `[(3, -2),(4, 1)]` then find the value of (A + I)(A − I)


If A = `[(0, 3, 3),(-3, 0, -4),(-3, 4, 0)]` and B = `[(x),(y),(z)]`, find the matrix B'(AB)


Find A–1 using adjoint method, where A = `[(cos theta, sin theta),(-sin theta, cos theta)]`


Find the adjoint of matrix A = `[(2, 0, -1),(3, 1, 2),(-1, 1, 2)]`


If A = [aij]2×2, where aij = i – j, then A = ______


Complete the following activity to find inverse of matrix using elementary column transformations and hence verify.

`[(2, 0, -1),(5, 1, 0),(0, 1, 3)]` B−1 = `[(1, 0, 0),(0, 1, 0),(0, 0, 1)]`

C1 → C1 + C3

`[("( )", 0, -1),("( )", 1, 0),("( )", 1, 3)]` B−1 = `[("( )", 0, 0),("( )", 1, 0),("( )", 0, 1)]`

C3 → C3 + C1 

`[(1, 0, 0),("( )", 1, "( )"),(3, 1, "( )")]` B−1 = `[(1, 0, "( )"),(0, 1, 0),("( )", 0, "( )")]`

C1 → C1 – 5C2, C3 → C3 – 5C2

`[(1, "( )", 0),(0, 1, 0),("( )", 1, "( )")]` B−1 = `[(1, 0, "( )"),("( )", 1, -5),(1, "( )", 2)]`

C1 → C1 – 2C3, C2 → C2 – C

`[(1, 0, 0),(0, 1, 0),(0, 0, 1)]` B−1 = `[(3, -1, "( )"),("( )", 6, -5),(5, "( )", "( )")]`

B−1 =  `[("( )", "( )", "( )"),("( )", "( )", "( )"),("( )", "( )", "( )")]`

`[(2, "( )", -1),("( )", 1, 0),(0, 1, "( )")] [(3, "( )", "( )"),("( )", 6, "( )"),("( )", -2, "( )")] = [(1, 0, 0),(0, 1, 0),(0, 0, 1)]`


If A = `[(2,-2,2),(2,3,0),(9,1,5)]` then, show that (adj A) A = O.


If A-1 = `[(1,0,3),(2,1,-1),(1,-1,1)]`  then, find A.


Find m if the matrix `[(1,1,3),(2,λ,4),(9,7,11)]` has no inverse.


The inverse matrix of `((3,1),(5,2))` is


If A = `|(3,-1,1),(-15,6,-5),(5,-2,2)|` then, find the Inverse of A.


If A = `[(2, 0, -1), (5, 1, 0), (0, 1, 3)]` and A−1 = `[(3, -1, 1), (α, 6, -5), (β, -2, 2)]`, then the values of α and β are, respectively.


If [abc] ≠ 0, then `(["a" + "b b" + "c c" + "a"])/(["b c a"])` = ____________.


If A and Bare square matrices of order 3 such that |A| = 2, |B| = 4, then |A(adj B)| = ______.


If A = `[(0, 0, 1), (0, 1, 0), (1, 0, 0)]`, then A-1 = ______ 


If A2 - A + I = 0, then A-1 = ______.


If A = `[(5, -4), (7, -5)]`, then 3A-1 =  ______ 


If A = `[(2,  -3, 3),(2, 2, 3),(3, "p", 2)]` and A–1 = `[(-2/5, 0, 3/5),(-1/5, 1/5, "q"),(2/5, 1/5, -2/5)]`, then ______.


Choose the correct option:

If X, Y, Z are non zero real numbers, then the inverse of matrix A = `[(x, 0, 0),(0, y, 0),(0, 0, z)]`


A–1 exists if |A| = 0.


The number of solutions of equation x2 – x3 = 1, – x1 + 2x3 = 2, x1 – 2x2 = 3 is ______.


If A = `[(x, 1),(1, 0)]` and A = A–1, then x = ______.


If A = `[(3, 1),(-1, 2)]`, show that A2 – 5A + 7I = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×