Advertisements
Advertisements
प्रश्न
Find the inverse of the following matrix (if they exist):
`[(2,-3),(5,7)]`
उत्तर
Let A = `[(2,-3),(5,7)]`
∴ |A| = `|(2,-3),(5,7)| = 14 + 15 = 29 ne 0`
∴ A-1 exists.
Consider AA-1 = I
∴ `[(2,-3),(5,7)] "A"^-1 = [(1,0),(0,1)]`
By 3R1, we get,
`[(6,-9),(5,7)] "A"^-1 = [(3,0),(0,1)]`
By R1 - R2, we get,
`[(1,-16),(5,7)] "A"^-1 = [(3,-1),(0,1)]`
By R2 - 5R1, we get,
`[(1,-16),(0,87)] "A"^-1 = [(3,-1),(-15,6)]`
By `(1/87)"R"_2,`we get
`[(1,-16),(0,1)] "A"^-1 = [(3,-1),(-5/29,2/29)]`
By R1 + 16R2, we get,
`[(1,0),(0,1)]"A"^-1 = [(7/29,3/29),(-5/29,2/29)]`
∴ A-1 = `1/29 [(7,3),(-5,2)]`
APPEARS IN
संबंधित प्रश्न
Find the inverse of the following matrix by elementary row transformations if it exists.
`A = [(1, 2, -2), (0, -2, 1), (-1, 3, 0)]`
Find the inverse of the following matrix by the adjoint method.
`[(1, 0, 0),(3, 3, 0),(5, 2, -1)]`
Find the inverse of the following matrix.
`[(2, -3),(-1, 2)]`
Find the inverse of the following matrix.
`[(0,1,2),(1,2,3),(3,1,1)]`
Find the inverses of the following matrices by the adjoint method:
`[(1,2,3),(0,2,4),(0,0,5)]`
Find the inverse of `[(1,2,3),(1,1,5),(2,4,7)]` by the adjoint method.
Adjoint of `[(2, -3),(4, -6)]` is _______
Fill in the blank :
If A = `[(2, 1),(1, 1)] "and" "A"^-1 = [(1, 1),(x, 2)]`, then x = _______
A = `[(cos alpha, - sin alpha, 0),(sin alpha, cos alpha, 0),(0, 0, 1)]`, then A−1 is
The solution (x, y, z) of the equation `[(1, 0, 1),(-1, 1, 0),(0, -1, 1)] [(x),(y),(z)] = [(1),(1),(2)]` is (x, y, z) =
`cos theta [(cos theta, sin theta),(-sin theta, cos theta)] + sin theta [(sin theta, - cos theta),(cos theta, sin theta)]` = ______
If A = `[(0, 0, -1),(0, -1, 0),(-1, 0, 0)]`, then the only correct statement about the matrix A is ______
If A = `[(3, 1),(5, 2)]`, and AB = BA = I, then find the matrix B
A + I = `[(3, -2),(4, 1)]` then find the value of (A + I)(A − I)
If A = `[(0, 3, 3),(-3, 0, -4),(-3, 4, 0)]` and B = `[(x),(y),(z)]`, find the matrix B'(AB)
Find A–1 using adjoint method, where A = `[(cos theta, sin theta),(-sin theta, cos theta)]`
Find the adjoint of matrix A = `[(2, 0, -1),(3, 1, 2),(-1, 1, 2)]`
If A = [aij]2×2, where aij = i – j, then A = ______
Complete the following activity to find inverse of matrix using elementary column transformations and hence verify.
`[(2, 0, -1),(5, 1, 0),(0, 1, 3)]` B−1 = `[(1, 0, 0),(0, 1, 0),(0, 0, 1)]`
C1 → C1 + C3
`[("( )", 0, -1),("( )", 1, 0),("( )", 1, 3)]` B−1 = `[("( )", 0, 0),("( )", 1, 0),("( )", 0, 1)]`
C3 → C3 + C1
`[(1, 0, 0),("( )", 1, "( )"),(3, 1, "( )")]` B−1 = `[(1, 0, "( )"),(0, 1, 0),("( )", 0, "( )")]`
C1 → C1 – 5C2, C3 → C3 – 5C2
`[(1, "( )", 0),(0, 1, 0),("( )", 1, "( )")]` B−1 = `[(1, 0, "( )"),("( )", 1, -5),(1, "( )", 2)]`
C1 → C1 – 2C3, C2 → C2 – C3
`[(1, 0, 0),(0, 1, 0),(0, 0, 1)]` B−1 = `[(3, -1, "( )"),("( )", 6, -5),(5, "( )", "( )")]`
B−1 = `[("( )", "( )", "( )"),("( )", "( )", "( )"),("( )", "( )", "( )")]`
`[(2, "( )", -1),("( )", 1, 0),(0, 1, "( )")] [(3, "( )", "( )"),("( )", 6, "( )"),("( )", -2, "( )")] = [(1, 0, 0),(0, 1, 0),(0, 0, 1)]`
If A = `[(2,-2,2),(2,3,0),(9,1,5)]` then, show that (adj A) A = O.
If A-1 = `[(1,0,3),(2,1,-1),(1,-1,1)]` then, find A.
Find m if the matrix `[(1,1,3),(2,λ,4),(9,7,11)]` has no inverse.
The inverse matrix of `((3,1),(5,2))` is
If A = `|(3,-1,1),(-15,6,-5),(5,-2,2)|` then, find the Inverse of A.
If A = `[(2, 0, -1), (5, 1, 0), (0, 1, 3)]` and A−1 = `[(3, -1, 1), (α, 6, -5), (β, -2, 2)]`, then the values of α and β are, respectively.
If [abc] ≠ 0, then `(["a" + "b b" + "c c" + "a"])/(["b c a"])` = ____________.
If A and Bare square matrices of order 3 such that |A| = 2, |B| = 4, then |A(adj B)| = ______.
If A = `[(0, 0, 1), (0, 1, 0), (1, 0, 0)]`, then A-1 = ______
If A2 - A + I = 0, then A-1 = ______.
If A = `[(5, -4), (7, -5)]`, then 3A-1 = ______
If A = `[(2, -3, 3),(2, 2, 3),(3, "p", 2)]` and A–1 = `[(-2/5, 0, 3/5),(-1/5, 1/5, "q"),(2/5, 1/5, -2/5)]`, then ______.
Choose the correct option:
If X, Y, Z are non zero real numbers, then the inverse of matrix A = `[(x, 0, 0),(0, y, 0),(0, 0, z)]`
A–1 exists if |A| = 0.
The number of solutions of equation x2 – x3 = 1, – x1 + 2x3 = 2, x1 – 2x2 = 3 is ______.
If A = `[(x, 1),(1, 0)]` and A = A–1, then x = ______.
If A = `[(3, 1),(-1, 2)]`, show that A2 – 5A + 7I = 0