हिंदी

Choose the correct answer from the given alternatives in the following question: If A−1 = -12[1-4-12], then A = ______. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Choose the correct answer from the given alternatives in the following question:

If A−1 = `- 1/2[(1,-4),(-1,2)]`, then A = ______.

विकल्प

  • `[(2,4),(-1,1)]`

  • `[(2,4),(1,-1)]`

  • `[(2,-4),(1,1)]`

  • `[(2,4),(1,1)]`

MCQ

उत्तर

`[(2,4),(1,1)]`

Explanation:

A−1 = `1/|"A"|` adj. A

A−1 = `- 1/2[(1,-4),(-1,2)]`

∴ `1/|"A"|` adj. A = `- 1/2[(1,-4),(-1,2)]`

∴ adj. A = `- 1/2[(1,-4),(-1,2)]`

A = `[(2,4),(1,1)]`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Matrics - Miscellaneous exercise 2 (B) [पृष्ठ ६३]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 2 Matrics
Miscellaneous exercise 2 (B) | Q 1.12 | पृष्ठ ६३

संबंधित प्रश्न

Find the inverse of matrix A by using adjoint method; where A = `[(1, 0, 1), (0, 2, 3), (1, 2, 1)]`


Find the inverse of the matrix `[(1      2     3),(1    1     5),(2    4     7)]` by adjoint method


If A = `[(1, 3), (3, 1)]`, Show that A2 - 2A is a scalar matrix.


Find the matrix of the co-factor for the following matrix.

`[(1, 0, 2),(-2, 1, 3),(0, 3, -5)]`


Find the adjoint of the following matrix.

`[(2,-3),(3,5)]`


Find the inverse of the following matrix (if they exist):

`((1,3),(2,7))`


Find the inverse of the following matrices by the adjoint method `[(1, 2, 3),(0, 2, 4),(0, 0, 5)]`.


Choose the correct alternative.

If AX = B, where A = `[(-1, 2),(2, -1)], "B" = [(1),(1)]`, then X = _______


If A is a no singular matrix, then det (A–1) = _______


Fill in the blank :

If a1x + b1y = c1 and a2x + b2y = c2, then matrix form is `[(......, ......),(......, ......)] = [(x),(y)] = [(......),(......)]`


Check whether the following matrices are invertible or not:

`[(1, 1),(1, 1)]`


A = `[(cos theta, - sin theta),(-sin theta, -cos theta)]` then find A−1 


If f(x) = x2 − 2x − 3 then find f(A) when A = `[(1, 2),(2, 1)]`


If A is invertible matrix of order 3 and |A| = 5, then find |adj A|


Find A–1 using adjoint method, where A = `[(cos theta, sin theta),(-sin theta, cos theta)]`


If A = `[(-4, -3, -3),(1, 0, 1),(4, 4, 3)]`, find adj (A).


The value of Minor of element b22 in matrix B = `[(2, -2),(4, 5)]` is ______


Find the adjoint of the matrix A = `[(2,3),(1,4)]`


If A = `[(2,-2,2),(2,3,0),(9,1,5)]` then, show that (adj A) A = O.


If A = `[(-1,2,-2),(4,-3,4),(4,-4,5)]`  then, show that the inverse of A is A itself.


Find m if the matrix `[(1,1,3),(2,λ,4),(9,7,11)]` has no inverse.


Solve by matrix inversion method:

2x + 3y – 5 = 0; x – 2y + 1 = 0.


Solve by matrix inversion method:

2x – z = 0; 5x + y = 4; y + 3z = 5


If A = `[(1,-1),(2,3)]` show that A2 - 4A + 5I2 = 0 and also find A-1.


The matrix M = `[(0,1,2),(1,2,3),(3,1,1)]` and its inverse is N = [nij]. What is the element n23 of matrix N?


If A = `[(2, -3), (3, 5)]`, then |Adj A| is equal to ______ 


If A = `[(1, tanx),(-tanx, 1)]`, then AT A–1 = ______.


If A = `[(5, -4), (7, -5)]`, then 3A-1 =  ______ 


If AB = I and B = AT, then _______.


If `A = [[-3,1],[-4,3]]` and A-1 = αA, then α = ______.


The matrix `[(lambda, 1, 0),(0, 3, 5),(0, -3, lambda)]` is invertible ______.


If A = `[(2, 3),(a, 6)]` is a singular matrix, then a = ______.


If A = `[(1, 2, 3),(-1, 1, 2),(1, 2, 4)]` then (A2 – 5A)A–1 = ______.


For a invertible matrix A if A(adjA) = `[(10, 0),(0, 10)]`, then |A| = ______.


If A = `[(2, 2),(-3, 2)]`, B = `[(0, -1),(1, 0)]`, then (B–1 A–1)–1 is equal to ______.


If A = `[(cos α, sin α),(- sin α, cos α)]`, then the matrix A is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×