हिंदी

If a = (1, 3), (3, 1) Show that A2 - 2a is a Scalar Matrix. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If A = `[(1, 3), (3, 1)]`, Show that A2 - 2A is a scalar matrix.

योग

उत्तर

A2 = A . A

= `[(1,3), (3, 1)] [(1,3), (3, 1)]`

= `[(10, 6), (6, 10)]`

A2 - 2A = `[(10, 6), (6, 10)] - 2[(1, 3), (3, 1)]`

A2 - 2A = `[(10, 6), (6, 10)] - [(2, 6), (6, 2)]`

A2 - 2A = `[(8, 0), (0, 8)]`

∴ A2 - 2A is a scalar matrix.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2015-2016 (March)

APPEARS IN

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the inverse of matrix A by using adjoint method; where A = `[(1, 0, 1), (0, 2, 3), (1, 2, 1)]`


Find the inverse of the following matrix by elementary row transformations if it exists.
`A = [(1, 2, -2), (0, -2, 1), (-1, 3, 0)]`


Find the inverse of the following matrix by the adjoint method.

`[(1, 0, 0),(3, 3, 0),(5, 2, -1)]`


Find the inverse of the following matrix (if they exist):

`((1,-1),(2,3))`


Find the inverse of the following matrix (if they exist):

`[(2,1),(7,4)]`


Find the inverse of the following matrices by the adjoint method `[(3, -1),(2, -1)]`.


Find the inverse `[(1, 2, 3 ),(1, 1, 5),(2, 4, 7)]` of the elementary row tranformation.


Check whether the following matrices are invertible or not:

`[(1, 0),(0, 1)]`


Find inverse of the following matrices (if they exist) by elementary transformations :

`[(2, -3, 3),(2, 2, 3),(3, -2, 2)]`


The adjoint matrix of `[(3, -3, 4),(2, -3, 4),(0, -1, 1)]` is ______.


If A = `[(cos alpha, sin alpha),(-sin alpha, cos alpha)]`, then A10 = ______


If A = `[(4, 5),(2, 5)]`, then |(2A)−1| = ______


If A = `[(3, 0, 0),(0, 3, 0),(0, 0, 3)]`, then |A| |adj A| = ______


If A = `[(1, 2, 3),(1, 1, 5),(2, 4, 7)]`, then find the value of a31A31 + a32A32 + a33A33.


If A = `[(2, 2),(-3, 2)]` and B = `[(0, -1),(1, 0)]`, then find the matrix (B−1 A−1)−1.


If A = `[(2, 4),(1, 3)]` and B = `[(1, 1),(0, 1)]` then find (A−1 B−1)


Complete the following activity to verify A. adj (A) = det (A) I.

Given A = `[(2, 0, -1),(5, 1, 0),(0, 1, 3)]` then

|A| = 2(____) – 0(____) + ( ) (____)

= 6 – 0 – 5

= ______ ≠ 0

Cofactors of all elements of matrix A are

A11 = `(-1)^2 |("( )", "( )"),("( )", "( )")|` = (______),

A12 = `(-1)^3 |(5, "( )"),("( )", 3)|` = – 15,

A13 = `(-1)^4 |(5, "( )"),("( )", 1)|` = 5,

A21 = _______, A22 = _______, A23 = _______,

A31 = `(-1)^4 |("( )", "( )"),("( )", "( )")|` = (______),

A32 = `(-1)^5 |(2, "( )"),("( )", 0)|` = (  ),

A33 = `(-1)^6 |(2, "( )"),("( )", 1)|` = 2,.

Cofactors of matrix A = `[(3, "____", "____"),("____", "____",-2),(1, "____", "____")]`

adj (A) = `[("____", "____", "____"),("____", "____","____"),("____","____","____")]`

A.adj (A) = `[(2, 0, -1),(5, 1, 0),(0, 1, 3)] [("( )", -1, 1), (-15, "( )", -5),("( )", -2, "( )")] = [(1, 0, "( )"),("( )", "( )", "( )"),(0, "( )", "( )")]` = |A|I


Find the inverse of the following matrix:

`[(1,2,3),(0,2,4),(0,0,5)]`


If A = `[(2,3),(1,-6)]` and B = `[(-1,4),(1,-2)]`, then verify adj (AB) = (adj B)(adj A)


If A = `[(2,-2,2),(2,3,0),(9,1,5)]` then, show that (adj A) A = O.


If A = `[(-1,2,-2),(4,-3,4),(4,-4,5)]`  then, show that the inverse of A is A itself.


If A = `[(3,7),(2,5)]` and B = `[(6,8),(7,9)]`, then verify that (AB)-1 = B-1A-1


If X = `[(8,-1,-3),(-5,1,2),(10,-1,-4)]` and Y = `[(2,1,-1),(0,2,1),(5,p,q)]`  then, find p, q if Y = X-1


Solve by matrix inversion method:

2x + 3y – 5 = 0; x – 2y + 1 = 0.


Solve by matrix inversion method:

3x – y + 2z = 13; 2x + y – z = 3; x + 3y – 5z = - 8


Solve by matrix inversion method:

x – y + 2z = 3; 2x + z = 1; 3x + 2y + z = 4


adj (AB) is equal to:


The matrix M = `[(0,1,2),(1,2,3),(3,1,1)]` and its inverse is N = [nij]. What is the element n23 of matrix N?


If A = `[(p/4, 0, 0), (0, q/5, 0), (0, 0, r/6)]` and `"A"^-1 = [(1/4, 0, 0), (0, 1/5, 0), (0, 0, 1/6)]`, then p + q + r = ______ 


If A is non-singular matrix and (A + l)(A - l) = 0 then A + A-1 = ______.


If A = `[(1,-1,1),(2,1,-3),(1,1,1)]`, then the sum of the elements of A-1 is ______.


If A = `[(2, 2),(4, 5)]` and A–1 = λ(adj(A)), then λ = ______ .


Find the inverse of the matrix A by using adjoint method.

where A = `[(-3, -1, 1),(0, 0, 1),(-15, 6, -6)]`


The inverse of the matrix `[(1, 0, 0),(3, 3, 0),(5, 2, -1)]` is ______.


If the inverse of the matrix `[(α, 14, -1),(2, 3, 1),(6, 2, 3)]` does not exist, then the value of α is ______.


If matrix A = `[(1, 2),(4, 3)]`, such that AX = I, then X is equal to ______.


If A = `[(1, 2),(3, 4)]` verify that A (adj A) = (adj A) A = |A| I


If A = `[(1, 2, 4),(4, 3, -2),(1, 0, -3)]`. Show that A–1 exists and find A–1 using column transformation.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×