Advertisements
Advertisements
प्रश्न
Solve by matrix inversion method:
3x – y + 2z = 13; 2x + y – z = 3; x + 3y – 5z = - 8
उत्तर
The given system can be written as
`[(3,-1,2),(2,1,-1),(1,3,-5)][(x),(y),(z)] = [(13),(3),(-8)]`
AX = B
Where A = `[(3,-1,2),(2,1,-1),(1,3,-5)]`, X = `[(x),(y),(z)]` and B = `[(13),(3),(-8)]`
|A| = `|(3,-1,2),(2,1,-1),(1,3,-5)|`
= 3(-5 + 3) – (-1) (-10 + 1) + 2 (6 – 1)
= 3(-2) + 1(-9) + 2(5)
= - 6 – 9 + 10
= - 5
[Aij] = `[(-2,-(-9),5),(-|(-1,2),(3,-5)|,|(3,2),(1,-5)|,-|(3,-1),(1,3)|),(|(-1,2),(1,-1)|,-|(3,2),(2,-1)|,|(3,-1),(2,1)|)]`
`= [(-2,9,5),(-(5-6),(-15-2),-(9+1)),((1-2),-(-3-4),(3+2))] => [(-2,9,5),(1,-17,-10),(-1,7,5)]`
adj A = `["A"_"ij"]^"T" = [(-2,1,-1),(9,-17,7),(5,-10,5)]`
`"A"^-1 = 1/|"A"|`(adj A)
`= 1/(-5)[(-2,1,-1),(9,-17,7),(5,-10,5)]`
X = A-1B
`= 1/(-5)[(-2,1,-1),(9,-17,7),(5,-10,5)][(13),(3),(-8)]`
`=> 1/(-5)[(-26+3+8),(117-51-56),(65-30-40)]`
`=> 1/(-5)[(-15),(10),(-5)]`
`[(x),(y),(z)] = [(3),(-2),(1)]`
∴ x = 3, y = -2, z = 1.
APPEARS IN
संबंधित प्रश्न
Choose the correct answer from the given alternatives in the following question:
The inverse of A = `[(0,1,0),(1,0,0),(0,0,1)]` is
The value of Minor of element b22 in matrix B = `[(2, -2),(4, 5)]` is ______
If X = `[(8,-1,-3),(-5,1,2),(10,-1,-4)]` and Y = `[(2,1,-1),(0,2,1),(5,p,q)]` then, find p, q if Y = X-1
If A = `|(1,1,1),(3,4,7),(1,-1,1)|` verify that A(adj A) = (adj A)(A) = |A|I3.
If A = `[(p/4, 0, 0), (0, q/5, 0), (0, 0, r/6)]` and `"A"^-1 = [(1/4, 0, 0), (0, 1/5, 0), (0, 0, 1/6)]`, then p + q + r = ______
The inverse of `[(1,cos alpha),(- cos alpha, -1)]` is ______.
The inverse of the matrix A = `[(3, 0, 0),(0, 4, 0),(0, 0, 5)]` is ______.
A–1 exists if |A| = 0.
If A = `[(x, 1),(1, 0)]` and A = A–1, then x = ______.
If A = `[(1, 1, 0),(2, 1, 5),(1, 2, 1)]`, then a11A21 + a12A22 + a13A23 is equal to ______.