हिंदी

If y = x log x, then d2ydx2= _____. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If y = x log x, then `(d^2y)/dx^2`= _____.

रिक्त स्थान भरें

उत्तर

If y = x log x, then `(d^2y)/dx^2`= `bb(underline(1/x))`

Explanation:

y = x log x

Differentiating both sides,

`dy/dx = x * d/dx(logx) + logx * d/dx(x)`

= `x * 1/x + logx` = 1 + logx

Again differentiating w.r.t.x,

`d/dx(dy/dx) = d/dx(1) + d/dx(logx)`

`(d^2y)/(dx^2) = 0 + 1/x = 1/x`

shaalaa.com
The Concept of Derivative - Derivatives of Logarithmic Functions
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Differentiation - MISCELLANEOUS EXERCISE - 3 [पृष्ठ ९९]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Differentiation
MISCELLANEOUS EXERCISE - 3 | Q II] 5) | पृष्ठ ९९

संबंधित प्रश्न

Find `"dy"/"dx"`if, y = `"x"^("x"^"2x")`


Find `"dy"/"dx"`if, y = `root(3)(("3x" - 1)/(("2x + 3")(5 - "x")^2))`


Find `dy/dx`if, y = `(x)^x + (a^x)`.


Fill in the blank.

If x = t log t and y = tt, then `"dy"/"dx"` = ____


Fill in the blank.

If y = `"e"^"ax"`, then `"x" * "dy"/"dx" =`____


The derivative of ax is ax log a.


Solve the following:

If y = [log(log(logx))]2, find `"dy"/"dx"`


Find `"dy"/"dx"` if y = `"x"^"x" + ("7x" - 1)^"x"`


Differentiate log (1 + x2) with respect to ax.


If y = `"a"^((1 + log"x"))`, then `("d"y)/("d"x)` is ______


If u = 5x and v = log x, then `("du")/("dv")` is ______


If u = ex and v = loge x, then `("du")/("dv")` is ______


State whether the following statement is True or False:

If y = log(log x), then `("d"y)/("d"x)` = logx


State whether the following statement is True or False:

If y = 4x, then `("d"y)/("d"x)` = 4x  


Find `("d"y)/("d"x)`, if y = [log(log(logx))]2 


Find `(dy)/(dx)`, if xy = yx 


Find `("d"y)/("d"x)`, if y = (log x)x + (x)logx


Find `("d"y)/("d"x)`, if y = x(x) + 20(x) 

Solution: Let y = x(x) + 20(x) 

Let u = `x^square` and v = `square^x`

∴ y = u + v

Diff. w.r.to x, we get

`("d"y)/("d"x) = square/("d"x) + "dv"/square`   .....(i)

Now, u = xx

Taking log on both sides, we get

log u = x × log x

Diff. w.r.to x,

`1/"u"*"du"/("d"x) = x xx 1/square + log x xx square`

∴ `"du"/("d"x)` = u(1 + log x)

∴ `"du"/("d"x) = x^x (1 +  square)`    .....(ii)

Now, v = 20x

Diff.w.r.to x, we get

`"dv"/("d"x") = 20^square*log(20)`     .....(iii)

Substituting equations (ii) and (iii) in equation (i), we get

`("d"y)/("d"x)` = xx(1 + log x) + 20x.log(20)


Solve the following differential equations:

x2ydx – (x3 – y3)dy = 0


If y = (log x)2 the `dy/dx` = ______.


Find `dy/dx  "if",y=x^(e^x) `


Find `dy/dx  "if",  y = x^(e^x)`


Find `dy/dx` if, y = `x^(e^x)`


Find `dy/dx, "if"  y=sqrt((2x+3)^5/((3x-1)^3(5x-2)))`


Find `dy/dx,"if"  y=x^x+(logx)^x`


Find `dy/dx if, y =  x^(e^x)`


Find `dy/dx` if, `y = x^(e^x)`


Find `dy/(dx)  "if", y = x^(e^(x))` 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×