Advertisements
Advertisements
प्रश्न
Differentiate log (1 + x2) with respect to ax.
उत्तर
Let u = log (1 + x2) and v = ax
u = log (1 + x2)
Differentiating both sides w.r.t.x, we get
`"du"/"dx" = 1/(1 + "x"^2) * "d"/"dx" (1 + "x"^2)`
`= 1/(1 + "x"^2) * (0 + "2x")`
∴ `"du"/"dx" = "2x"/(1 + "x"^2)`
v = ax
Differentiating both sides w.r.t.x, we get
`"dv"/"dx" = "a"^"x" * log "a"`
∴ `"du"/"dv" = ("du"/"dx")/("dv"/"dx") = ("2x"/(1 + "x"^2))/("a"^"x" * log "a")`
∴ `"du"/"dv" = "2x"/("a"^"x" * log "a" * (1 + "x"^2))`
APPEARS IN
संबंधित प्रश्न
Find `"dy"/"dx"`if, y = (2x + 5)x
Find `"dy"/"dx"`if, y = `(log "x"^"x") + "x"^(log "x")`
Find `"dy"/"dx"`if, y = `10^("x"^"x") + 10^("x"^10) + 10^(10^"x")`
Fill in the blank.
If x = t log t and y = tt, then `"dy"/"dx"` = ____
Fill in the blank.
If y = `"e"^"ax"`, then `"x" * "dy"/"dx" =`____
If xy = 2x – y, then `("d"y)/("d"x)` = ______
If y = `"a"^((1 + log"x"))`, then `("d"y)/("d"x)` is ______
If u = 5x and v = log x, then `("du")/("dv")` is ______
State whether the following statement is True or False:
If y = log(log x), then `("d"y)/("d"x)` = logx
If x = t.logt, y = tt, then show that `("d"y)/("d"x)` = tt
Find `("d"y)/("d"x)`, if y = (log x)x + (x)logx
If xa .yb = `(x + y)^((a + b))`, then show that `("d"y)/("d"x) = y/x`
`int 1/(4x^2 - 1) dx` = ______.
Find`dy/dx if, y = x^(e^x)`
Find `dy/dx "if",y=x^(e^x) `
FInd `dy/dx` if,`x=e^(3t), y=e^sqrtt`
Find `dy/dx, "if" y=sqrt((2x+3)^5/((3x-1)^3(5x-2)))`
Find `dy/dx if, y = x^(e^x)`
Find `dy/dx` if, `y = x^(e^x)`
Find `dy/(dx) "if", y = x^(e^(x))`