English

Differentiate log (1 + x2) with respect to ax. - Mathematics and Statistics

Advertisements
Advertisements

Question

Differentiate log (1 + x2) with respect to ax.

Sum

Solution

Let u = log (1 + x2) and v = ax

u = log (1 + x2)

Differentiating both sides w.r.t.x, we get

`"du"/"dx" = 1/(1 + "x"^2) * "d"/"dx" (1 + "x"^2)`

`= 1/(1 + "x"^2) * (0 + "2x")`

∴ `"du"/"dx" = "2x"/(1 + "x"^2)`

v = a

Differentiating both sides w.r.t.x, we get

`"dv"/"dx" = "a"^"x" * log "a"`

∴ `"du"/"dv" = ("du"/"dx")/("dv"/"dx") = ("2x"/(1 + "x"^2))/("a"^"x" * log "a")`

∴ `"du"/"dv" = "2x"/("a"^"x" * log "a" * (1 + "x"^2))`

shaalaa.com
The Concept of Derivative - Derivatives of Logarithmic Functions
  Is there an error in this question or solution?
Chapter 3: Differentiation - MISCELLANEOUS EXERCISE - 3 [Page 100]

APPEARS IN

Balbharati Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
Chapter 3 Differentiation
MISCELLANEOUS EXERCISE - 3 | Q IV] 17) | Page 100

RELATED QUESTIONS

Find `"dy"/"dx"`if, y = `"x"^("x"^"2x")`


Find `"dy"/"dx"`if, y = `(1 + 1/"x")^"x"`


Find `"dy"/"dx"`if, y = (2x + 5)x 


Fill in the Blank

If 0 = log(xy) + a, then `"dy"/"dx" =  (-"y")/square`


State whether the following is True or False:

The derivative of `log_ax`, where a is constant is `1/(x.loga)`.


State whether the following is True or False:

If y = e2, then `"dy"/"dx" = 2"e"`


The derivative of ax is ax log a.


If u = 5x and v = log x, then `("du")/("dv")` is ______


State whether the following statement is True or False:

If y = 4x, then `("d"y)/("d"x)` = 4x  


Find `("d"y)/("d"x)`, if x = `sqrt(1 + "u"^2)`, y = log(1 +u2)


Find `("d"y)/("d"x)`, if y = (log x)x + (x)logx


Find `("d"y)/("d"x)`, if y = xx + (7x – 1)x 


Find `("d"y)/("d"x)`, if y = `x^(x^x)`


Find `("d"y)/("d"x)`, if y = x(x) + 20(x) 

Solution: Let y = x(x) + 20(x) 

Let u = `x^square` and v = `square^x`

∴ y = u + v

Diff. w.r.to x, we get

`("d"y)/("d"x) = square/("d"x) + "dv"/square`   .....(i)

Now, u = xx

Taking log on both sides, we get

log u = x × log x

Diff. w.r.to x,

`1/"u"*"du"/("d"x) = x xx 1/square + log x xx square`

∴ `"du"/("d"x)` = u(1 + log x)

∴ `"du"/("d"x) = x^x (1 +  square)`    .....(ii)

Now, v = 20x

Diff.w.r.to x, we get

`"dv"/("d"x") = 20^square*log(20)`     .....(iii)

Substituting equations (ii) and (iii) in equation (i), we get

`("d"y)/("d"x)` = xx(1 + log x) + 20x.log(20)


If y = x . log x then `dy/dx` = ______.


Find `dy/dx` if, `y = x^(e^x)`


Find `dy/dx` if, `y = x^(e^x)`


Find `dy/(dx)  "if", y = x^(e^(x))` 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×