Advertisements
Advertisements
Question
Find `"dy"/"dx"`if, y = `"x"^("x"^"2x")`
Solution
y = `"x"^("x"^"2x")`
Taking logarithm of both sides, we get
log y = log`("x")^("x"^"2x")`
∴ log y = `"x"^"2x" * log "x"`
Differentiating both sides w.r.t.x, we get
`1/"y" * "dy"/"dx" = "x"^"2x" * "d"/"dx" (log "x") + log "x" * "d"/"dx"("x"^"2x")`
∴ `1/"y"*"dy"/"dx" = "x"^"2x" * 1/"x" + log "x" * "d"/"dx"("x"^"2x")` .....(i)
Let u = `"x"^"2x"`
Taking logarithm of both sides, we get
log u = `log "x"^"2x" = "2x" * log"x"`
Differentiating both sides w.r.t.x, we get
`1/"u" * "du"/"dx" = "2x" * "d"/"dx" (log "x") + log "x" * "d"/"dx"(2"x")`
∴ `1/"u" * "du"/"dx" = "2x" * 1/"x" + log "x" * (2)`
∴ `1/"u" * "du"/"dx"` = 2 + 2 log x
∴ `"du"/"dx"` = u(2 + 2 log x)
∴ `"du"/"dx"` = 2u(1 + log x)
∴ `"du"/"dx" = "2x"^"2x" (1 + log "x")` ....(ii)
Substituting (ii) in (i), we get
`1/"y" * "dy"/"dx" = "x"^(2"x") * 1/"x" + (log "x")(2"x"^"2x")`(1 + log x)
∴ `"dy"/"dx" = "y"["x"^"2x"/"x" + 2"x"^(2"x") * log "x"(1 + log "x")]`
∴ `"dy"/"dx" = "x"^("x"^"2x") * "x"^"2x" log "x"[1/("x log x") + 2 (1 + log "x")]`
APPEARS IN
RELATED QUESTIONS
Find `"dy"/"dx"`if, y = `"x"^("e"^"x")`
Find `"dy"/"dx"`if, y = `(1 + 1/"x")^"x"`
Find `"dy"/"dx"`if, y = `(log "x"^"x") + "x"^(log "x")`
Fill in the blank.
If x = t log t and y = tt, then `"dy"/"dx"` = ____
Fill in the blank.
If y = `"e"^"ax"`, then `"x" * "dy"/"dx" =`____
State whether the following is True or False:
The derivative of `log_ax`, where a is constant is `1/(x.loga)`.
Find `"dy"/"dx"` if y = `sqrt(((3"x" - 4)^3)/(("x + 1")^4("x + 2")))`
Find `"dy"/"dx"` if y = `"x"^"x" + ("7x" - 1)^"x"`
If y = `"a"^((1 + log"x"))`, then `("d"y)/("d"x)` is ______
If u = ex and v = loge x, then `("du")/("dv")` is ______
State whether the following statement is True or False:
If y = log(log x), then `("d"y)/("d"x)` = logx
Find `("d"y)/("d"x)`, if x = `sqrt(1 + "u"^2)`, y = log(1 +u2)
Find `("d"y)/("d"x)`, if y = `root(3)(((3x - 1))/((2x + 3)(5 - x)^2)`
If xa .yb = `(x + y)^((a + b))`, then show that `("d"y)/("d"x) = y/x`
Find `("d"y)/("d"x)`, if y = x(x) + 20(x)
Solution: Let y = x(x) + 20(x)
Let u = `x^square` and v = `square^x`
∴ y = u + v
Diff. w.r.to x, we get
`("d"y)/("d"x) = square/("d"x) + "dv"/square` .....(i)
Now, u = xx
Taking log on both sides, we get
log u = x × log x
Diff. w.r.to x,
`1/"u"*"du"/("d"x) = x xx 1/square + log x xx square`
∴ `"du"/("d"x)` = u(1 + log x)
∴ `"du"/("d"x) = x^x (1 + square)` .....(ii)
Now, v = 20x
Diff.w.r.to x, we get
`"dv"/("d"x") = 20^square*log(20)` .....(iii)
Substituting equations (ii) and (iii) in equation (i), we get
`("d"y)/("d"x)` = xx(1 + log x) + 20x.log(20)
Find`dy/dx if, y = x^(e^x)`
Find `dy/dx` if, y = `x^(e^x)`
Find `dy/dx` if, y = `x^(e^x)`