English

Find dydxif, y = xx2x - Mathematics and Statistics

Advertisements
Advertisements

Question

Find `"dy"/"dx"`if, y = `"x"^("x"^"2x")`

Sum

Solution

y = `"x"^("x"^"2x")`

Taking logarithm of both sides, we get

log y = log`("x")^("x"^"2x")`

∴ log y = `"x"^"2x" * log "x"` 

Differentiating both sides w.r.t.x, we get

`1/"y" * "dy"/"dx" = "x"^"2x" * "d"/"dx" (log "x") + log "x" * "d"/"dx"("x"^"2x")`

∴ `1/"y"*"dy"/"dx" = "x"^"2x" * 1/"x" + log "x" * "d"/"dx"("x"^"2x")`      .....(i)

Let u = `"x"^"2x"`

Taking logarithm of both sides, we get

log u = `log "x"^"2x" = "2x" * log"x"`

Differentiating both sides w.r.t.x, we get

`1/"u" * "du"/"dx" = "2x" * "d"/"dx" (log "x") + log "x" * "d"/"dx"(2"x")`

∴ `1/"u" * "du"/"dx" = "2x" * 1/"x" + log "x" * (2)`

∴ `1/"u" * "du"/"dx"` = 2 + 2 log x

∴ `"du"/"dx"` = u(2 + 2 log x)

∴ `"du"/"dx"` = 2u(1 + log x)

∴ `"du"/"dx" = "2x"^"2x" (1 + log "x")`    ....(ii)

Substituting (ii) in (i), we get

`1/"y" * "dy"/"dx" = "x"^(2"x") * 1/"x" + (log "x")(2"x"^"2x")`(1 + log x)

∴ `"dy"/"dx" = "y"["x"^"2x"/"x" + 2"x"^(2"x") * log "x"(1 + log "x")]`

∴ `"dy"/"dx" = "x"^("x"^"2x") * "x"^"2x" log "x"[1/("x log x") + 2 (1 + log "x")]`

shaalaa.com
The Concept of Derivative - Derivatives of Logarithmic Functions
  Is there an error in this question or solution?
Chapter 3: Differentiation - EXERCISE 3.3 [Page 94]

APPEARS IN

RELATED QUESTIONS

Find `"dy"/"dx"`if, y = `"x"^("e"^"x")`


Find `"dy"/"dx"`if, y = `(1 + 1/"x")^"x"`


Find `"dy"/"dx"`if, y = `(log "x"^"x") + "x"^(log "x")`


Fill in the blank.

If x = t log t and y = tt, then `"dy"/"dx"` = ____


Fill in the blank.

If y = `"e"^"ax"`, then `"x" * "dy"/"dx" =`____


State whether the following is True or False:

The derivative of `log_ax`, where a is constant is `1/(x.loga)`.


Find `"dy"/"dx"` if y = `sqrt(((3"x" - 4)^3)/(("x + 1")^4("x + 2")))`


Find `"dy"/"dx"` if y = `"x"^"x" + ("7x" - 1)^"x"`


If y = `"a"^((1 + log"x"))`, then `("d"y)/("d"x)` is ______


If u = ex and v = loge x, then `("du")/("dv")` is ______


State whether the following statement is True or False:

If y = log(log x), then `("d"y)/("d"x)` = logx


Find `("d"y)/("d"x)`, if x = `sqrt(1 + "u"^2)`, y = log(1 +u2)


Find `("d"y)/("d"x)`, if y = `root(3)(((3x - 1))/((2x + 3)(5 - x)^2)`


If xa .yb = `(x + y)^((a + b))`, then show that `("d"y)/("d"x) = y/x`


Find `("d"y)/("d"x)`, if y = x(x) + 20(x) 

Solution: Let y = x(x) + 20(x) 

Let u = `x^square` and v = `square^x`

∴ y = u + v

Diff. w.r.to x, we get

`("d"y)/("d"x) = square/("d"x) + "dv"/square`   .....(i)

Now, u = xx

Taking log on both sides, we get

log u = x × log x

Diff. w.r.to x,

`1/"u"*"du"/("d"x) = x xx 1/square + log x xx square`

∴ `"du"/("d"x)` = u(1 + log x)

∴ `"du"/("d"x) = x^x (1 +  square)`    .....(ii)

Now, v = 20x

Diff.w.r.to x, we get

`"dv"/("d"x") = 20^square*log(20)`     .....(iii)

Substituting equations (ii) and (iii) in equation (i), we get

`("d"y)/("d"x)` = xx(1 + log x) + 20x.log(20)


Find`dy/dx if, y = x^(e^x)`


Find `dy/dx` if, y = `x^(e^x)`


Find `dy/dx` if, y = `x^(e^x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×