Advertisements
Advertisements
Question
Find `"dy"/"dx"` if y = `sqrt(((3"x" - 4)^3)/(("x + 1")^4("x + 2")))`
Solution
y = `sqrt(((3"x" - 4)^3)/(("x + 1")^4("x + 2")))`
`= ("3x" - 4)^(3/2)/(("x + 1")^(4/2)*("x + 2")^(1/2))`
Taking logarithm of both sides, we get
log y = log[`("3x" - 4)^(3/2)/(("x + 1")^(4/2)*("x + 2")^(1/2))]`
`= log ("3x" - 4)^(3/2) - [log ("x + 1")^2 + log ("x + 2")^(1/2)]`
`= 3/2 log("3x" - 4) - 2log ("x + 1") - 1/2 log ("x + 2")`
Differentiating both sides w.r.t. x, we get
`1/"y" * "dy"/"dx" = 3/2 * "d"/"dx" [log (3"x" - 4)] - 2 "d"/"dx" [log ("x + 1")] - 1/2 * "d"/"dx" [log ("x + 2")]`
`= 3/2 * 1/("3x" - 4) * "d"/"dx" ("3x" - 4) - 2 * 1/("x + 1") * "d"/"dx" ("x + 1") - 1/2 * 1/("x + 2") * "d"/"dx" ("x + 2")`
∴ `1/"y" * "dy"/"dx" = 3/(2("3x - 4")) xx 3 - 2/("x + 1") xx 1 - 1/(2 ("x + 2")) xx 1`
∴ `1/"y" * "dy"/"dx" = 9/(2("3x - 4")) - 2/("x + 1") - 1/(2 ("x + 2"))`
∴ `"dy"/"dx" = "y"/2 [9/"3x - 4" - 4/"x + 1" - 1/"x + 2"]`
∴ `"dy"/"dx" = 1/2 sqrt(((3"x" - 4)^3)/(("x + 1")^4("x + 2"))) [9/"3x - 4" - 4/"x + 1" - 1/"x + 2"]`
APPEARS IN
RELATED QUESTIONS
Find `"dy"/"dx"`if, y = (2x + 5)x
Find `"dy"/"dx"`if, y = `10^("x"^"x") + 10^("x"^10) + 10^(10^"x")`
If y = log `("e"^"x"/"x"^2)`, then `"dy"/"dx" = ?`
Fill in the blank.
If x = t log t and y = tt, then `"dy"/"dx"` = ____
State whether the following is True or False:
If y = e2, then `"dy"/"dx" = 2"e"`
The derivative of ax is ax log a.
Differentiate log (1 + x2) with respect to ax.
State whether the following statement is True or False:
If y = log(log x), then `("d"y)/("d"x)` = logx
Find `("d"y)/("d"x)`, if y = [log(log(logx))]2
Find `("d"y)/("d"x)`, if y = `x^(x^x)`
Find`dy/dx if, y = x^(e^x)`
Find `dy/dx "if",y=x^(e^x) `
Find `dy/dx "if", y = x^(e^x)`
Find `dy/dx, "if" y=sqrt((2x+3)^5/((3x-1)^3(5x-2)))`
Find `dy/dx,"if" y=x^x+(logx)^x`
Find `dy/dx if, y = x^(e^x)`
Find `dy/dx` if, `y = x^(e^x)`
Find `dy/dx` if, `y = x^(e^x)`
Find `dy/(dx)` if, `y = x^(e^x)`