Advertisements
Advertisements
Question
Find `("d"y)/("d"x)`, if y = `x^(x^x)`
Solution
y = `x^(x^x)`
Taking logarithm of both sides, we get
log y = `log x^(x^x)`
∴ log y = xx log x
Differentiating both sides w.r.t. x, we get
`"d"/("d"x)(log y) = x^x*"d"/("d"x)(log x) + logx*"d"/("d"x)(x^x)`
∴ `1/y*("d"y)/("d"x) = x^x*1/x + logx*"d"/("d"x)(x^x)` ......(i)
Let u = xx
Taking logarithm of both sides, we get
log u = log xx
∴ log u = x log x
Differentiating both sides w.r.t. x, we get
`"d"/("d"x)(log "u") = x*"d"/("d"x)(log x) + logx*"d"/("d"x)(x)`
∴ `1/"u"*"du"/("d"x) = x*1/x + logx*1`
∴ `1/"u"*"du"/("d"x)` = 1 + log x
∴ `"du"/("d"x)` = u(1 + log x)
∴ `"d"/("d"x)(x^x)` = xx(1 + log x) ......(ii)
Substituting (ii) in (i), we get
`1/y*("d"y)/("d"x) = x^x*1/x + logx*x^x(1 + log x)`
∴ `("d"y)/("d"x) = yx^x[1/x + logx(1 + logx)]`
∴ `("d"y)/("d"x) = x^(x^x)*x^x[1/x + logx(1 + logx)]`
APPEARS IN
RELATED QUESTIONS
Find `"dy"/"dx"`if, y = `"x"^("e"^"x")`
Find `dy/dx`if, y = `(x)^x + (a^x)`.
If y = x log x, then `(d^2y)/dx^2`= _____.
Solve the following:
If y = [log(log(logx))]2, find `"dy"/"dx"`
Differentiate log (1 + x2) with respect to ax.
Find `("d"y)/("d"x)`, if y = [log(log(logx))]2
Find `("d"y)/("d"x)`, if xy = log(xy)
Find `("d"y)/("d"x)`, if y = (log x)x + (x)logx
Find `("d"y)/("d"x)`, if y = xx + (7x – 1)x
Find `("d"y)/("d"x)`, if y = `root(3)(((3x - 1))/((2x + 3)(5 - x)^2)`
If xa .yb = `(x + y)^((a + b))`, then show that `("d"y)/("d"x) = y/x`
Find `("d"y)/("d"x)`, if y = x(x) + 20(x)
Solution: Let y = x(x) + 20(x)
Let u = `x^square` and v = `square^x`
∴ y = u + v
Diff. w.r.to x, we get
`("d"y)/("d"x) = square/("d"x) + "dv"/square` .....(i)
Now, u = xx
Taking log on both sides, we get
log u = x × log x
Diff. w.r.to x,
`1/"u"*"du"/("d"x) = x xx 1/square + log x xx square`
∴ `"du"/("d"x)` = u(1 + log x)
∴ `"du"/("d"x) = x^x (1 + square)` .....(ii)
Now, v = 20x
Diff.w.r.to x, we get
`"dv"/("d"x") = 20^square*log(20)` .....(iii)
Substituting equations (ii) and (iii) in equation (i), we get
`("d"y)/("d"x)` = xx(1 + log x) + 20x.log(20)
Solve the following differential equations:
x2ydx – (x3 – y3)dy = 0
If y = x . log x then `dy/dx` = ______.
Find `dy/dx, "if" y=sqrt((2x+3)^5/((3x-1)^3(5x-2)))`
Find `dy/dx` if, y = `x^(e^x)`
Find `dy/dx` if, y = `x^(e^x)`
Find `dy/dx "if", y = x^(e^x)`