Advertisements
Advertisements
Question
Find `("d"y)/("d"x)`, if xy = log(xy)
Solution
xy = log(xy)
Differentiating both sides w.r.t. x, we get
`x*("d"y)/("d"x) + y*"d"/("d"x)(x) = 1/(xy)*"d"/("d"x)(xy)`
∴ `x*("d"y)/("d"x) + y*1 = 1/(xy)[x*("d"y)/("d"x) + y*"d"/("d"x)(x)]`
∴ `x*("d"y)/("d"x) + y = 1/(xy)(x("d"y)/("d"x) + y*1)`
∴ `x*("d"y)/("d"x) + y = 1/y*("d"y)/("d"x) + 1/x`
∴ `(x - 1/y)("d"y)/("d"x) = 1/x - y`
∴ `-((1 - xy)/y)("d"y)/("d"x) = ((1 - xy)/x)`
∴ `("d"y)/("d"x) = -((1 - xy)/x) xx (y/(1 - xy))`
∴ `("d"y)/("d"x) = (-y)/x`
APPEARS IN
RELATED QUESTIONS
Fill in the blank.
If x = t log t and y = tt, then `"dy"/"dx"` = ____
Find `"dy"/"dx"` if y = `sqrt(((3"x" - 4)^3)/(("x + 1")^4("x + 2")))`
Find `("d"y)/("d"x)`, if y = [log(log(logx))]2
If x = t.logt, y = tt, then show that `("d"y)/("d"x)` = tt
Find `("d"y)/("d"x)`, if y = (log x)x + (x)logx
Find `("d"y)/("d"x)`, if y = `x^(x^x)`
Find `("d"y)/("d"x)`, if y = x(x) + 20(x)
Solution: Let y = x(x) + 20(x)
Let u = `x^square` and v = `square^x`
∴ y = u + v
Diff. w.r.to x, we get
`("d"y)/("d"x) = square/("d"x) + "dv"/square` .....(i)
Now, u = xx
Taking log on both sides, we get
log u = x × log x
Diff. w.r.to x,
`1/"u"*"du"/("d"x) = x xx 1/square + log x xx square`
∴ `"du"/("d"x)` = u(1 + log x)
∴ `"du"/("d"x) = x^x (1 + square)` .....(ii)
Now, v = 20x
Diff.w.r.to x, we get
`"dv"/("d"x") = 20^square*log(20)` .....(iii)
Substituting equations (ii) and (iii) in equation (i), we get
`("d"y)/("d"x)` = xx(1 + log x) + 20x.log(20)
Find `dy/dx "if",y=x^(e^x) `
FInd `dy/dx` if,`x=e^(3t), y=e^sqrtt`
Find `dy/dx "if", y = x^(e^x)`
Find `dy/dx` if, y = `x^(e^x)`
Find `dy/dx,"if" y=x^x+(logx)^x`
Find `dy / dx` if, `y = x^(e^x)`
Find `dy/(dx) "if", y = x^(e^(x))`
Find `dy/(dx)` if, `y = x^(e^x)`
Find `dy/(dx)` if, `x = e^(3t), y = e^sqrtt`.