Advertisements
Advertisements
प्रश्न
Find `("d"y)/("d"x)`, if xy = log(xy)
उत्तर
xy = log(xy)
Differentiating both sides w.r.t. x, we get
`x*("d"y)/("d"x) + y*"d"/("d"x)(x) = 1/(xy)*"d"/("d"x)(xy)`
∴ `x*("d"y)/("d"x) + y*1 = 1/(xy)[x*("d"y)/("d"x) + y*"d"/("d"x)(x)]`
∴ `x*("d"y)/("d"x) + y = 1/(xy)(x("d"y)/("d"x) + y*1)`
∴ `x*("d"y)/("d"x) + y = 1/y*("d"y)/("d"x) + 1/x`
∴ `(x - 1/y)("d"y)/("d"x) = 1/x - y`
∴ `-((1 - xy)/y)("d"y)/("d"x) = ((1 - xy)/x)`
∴ `("d"y)/("d"x) = -((1 - xy)/x) xx (y/(1 - xy))`
∴ `("d"y)/("d"x) = (-y)/x`
APPEARS IN
संबंधित प्रश्न
Find `"dy"/"dx"`if, y = `"x"^("x"^"2x")`
Find `"dy"/"dx"`if, y = (2x + 5)x
Find `"dy"/"dx"`if, y = `root(3)(("3x" - 1)/(("2x + 3")(5 - "x")^2))`
Find `"dy"/"dx"`if, y = `10^("x"^"x") + 10^("x"^10) + 10^(10^"x")`
Fill in the blank.
If x = t log t and y = tt, then `"dy"/"dx"` = ____
Solve the following:
If y = [log(log(logx))]2, find `"dy"/"dx"`
Differentiate log (1 + x2) with respect to ax.
If y = `"a"^((1 + log"x"))`, then `("d"y)/("d"x)` is ______
If u = 5x and v = log x, then `("du")/("dv")` is ______
Solve the following differential equations:
x2ydx – (x3 – y3)dy = 0
If y = x . log x then `dy/dx` = ______.
Find `dy/dx "if",y=x^(e^x) `
Find `dy/dx` if, y = `x^(e^x)`
Find `dy/dx , if y^x = e^(x+y)`
Find `dy/dx, "if" y=sqrt((2x+3)^5/((3x-1)^3(5x-2)))`
Find `dy/dx,"if" y=x^x+(logx)^x`
Find `dy/dx` if, y = `x^(e^x)`