Advertisements
Advertisements
प्रश्न
Find `("d"y)/("d"x)`, if x = `sqrt(1 + "u"^2)`, y = log(1 +u2)
उत्तर
x = `sqrt(1 + "u"^2)`
Differentiating both sides w.r.t. u, we get
`("d"x)/"du" = "d"/"du"(sqrt(1 + "u"^2))`
= `1/(2sqrt(1 + "u"^2))*"d"/"du"(1 + "u"^2)`
= `1/(2sqrt(1 + "u"^2)) xx (0 + 2"u")`
= `"u"/sqrt(1 + "u"^2)`
y = log(1 + u2)
Differentiating both sides w.r.t. u, we get
`("d"y)/"du" = "d"/"du"[log(1 + "u"^2)]`
= `1/(1 + "u"^2)*"d"/"du"(1 + "u"^2)`
= `1/(1 + "u"^2) xx (0 + 2"u") = (2"u")/(1 + "u"^2)`
∴ `("d"y)/("d"x) = ((("d"y)/"du"))/((("d"x)/("du"))) = (((2"u")/(1 + "u"^2)))/(("u"/sqrt(1 + "u"^2))`
= `2/(1 + "u"^2) xx sqrt(1 + "u"^2)`
∴ `("d"y)/("d"x) = 2/sqrt(1 + "u"^2)`
APPEARS IN
संबंधित प्रश्न
Find `"dy"/"dx"`if, y = `"x"^("x"^"2x")`
Find `"dy"/"dx"`if, y = `"e"^("x"^"x")`
Find `"dy"/"dx"`if, y = `(log "x"^"x") + "x"^(log "x")`
Fill in the blank.
If y = y = [log (x)]2 then `("d"^2"y")/"dx"^2 =` _____.
Fill in the blank.
If y = `"e"^"ax"`, then `"x" * "dy"/"dx" =`____
State whether the following is True or False:
If y = e2, then `"dy"/"dx" = 2"e"`
Find `"dy"/"dx"` if y = `sqrt(((3"x" - 4)^3)/(("x + 1")^4("x + 2")))`
Find `(dy)/(dx)`, if xy = yx
Find `("d"y)/("d"x)`, if xy = log(xy)
If x = t.logt, y = tt, then show that `("d"y)/("d"x)` = tt
Find `("d"y)/("d"x)`, if y = xx + (7x – 1)x
If xa .yb = `(x + y)^((a + b))`, then show that `("d"y)/("d"x) = y/x`
If y = (log x)2 the `dy/dx` = ______.
Find`dy/dx if, y = x^(e^x)`
Find `dy/dx` if, y = `x^(e^x)`
Find `dy/dx , if y^x = e^(x+y)`
Find `dy/dx,"if" y=x^x+(logx)^x`
Find `dy / dx` if, `y = x^(e^x)`
Find `dy/dx "if", y = x^(e^x)`